Abstract

Multilayer structures of molybdenum and silicon have been synthesized by sputter deposition onto flat silicon single-crystal silicon substrates and spherically ground (0.5- and 22.0-m radii) fused silica substrates and the reflectivities for 170.4-Å (72.8-eV), 160.1-Å (77.4-eV), and 228-Å (54.4-eV) light measured at near normal incidence. Observed peak values ranged from 26.2 to 78%, the highest reflectivities occurring closest to normal incidence. Energy resolutions were ∼10 in all cases. Model calculations were performed using optical constants from the literature and experimentally determined multilayer structural parameters. In all cases the measured reflectivities were equal to or larger (by up to a factor of 2) than the calculated values, a result attributed to uncertainty in the optical constants used in the calculations. Experimental and calculated angular peak positions and energy resolutions were in good agreement. The high reflectivities of these molybdenum-silicon structures will make possible application of traditional optics approaches in the EUV and support new developments including free electron lasers.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dumond, J. P. Youtz, “An X-Ray Method of Determining Rates of Diffusion in the Solid State,” J. Appl. Phys. 11, 357 (1940).
    [Crossref]
  2. J. Dinklage, R. Frerichs, “X-Ray Diffraction and Diffusion in Metal Film Layered Structures,” J. Appl. Phys. 34, 2633 (1963).
    [Crossref]
  3. J. Dinklage, “X-Ray Diffraction by Multilayered Thin Film Structures and their Diffusion,” J. Appl. Phys. 38, 3781 (1967).
    [Crossref]
  4. E. Spiller, “Multilayer Interference Coatings for the Vacuum Ultraviolet,” in Space Optics, Proceedings, Ninth ICO, Santa Monica 1972, (National Academy of Science, Washington, D.C., 1974), p. 581.
  5. E. Spiller, “Reflective Multilayer Coatings for the Far UV Region,” Appl. Opt. 15, 2333 (1976).
    [Crossref] [PubMed]
  6. R.-P. Haelbich, C. Kunz, “Multilayer Interference Mirrors for the XUV Range Around 100-eV Photon Energy,” Opt. Commun. 17, 287 (1976).
    [Crossref]
  7. R.-P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184 (1979).
    [Crossref]
  8. E. Spiller, A. Segmüller, R.-P. Haelbich, “The Fabrication of Multilayer X-Ray Mirrors,” in Conference on Ultrasoft X-ray Microscopy, June 1979, D. F. Parsons, Ed., Ann. N.Y. Acad. Sci. (1980).
  9. T. W. Barbee, “Sputtered Layered Synthetic Microstructure (LSM) Dispersion Elements,” AIP Conf. Proc. No. 75, 131 (1981).
    [Crossref]
  10. E. Spiller, “Evaporated Multilayer Dispersion Elements for Soft X-Rays,” AIP Conf. Proc. No. 75, 125 (1981).
  11. B. L. Henke, “Synthetic Multilayers as Bragg Diffractors for X-Rays and Extreme Ultraviolet: Calculations and Performance,” AIP Conf. Proc. No. 75, 85 (1981).
    [Crossref]
  12. J. H. Underwood, T. W. Barbee, “Low Energy X-Ray Spectroscopy with Crystals and Multilayers,” AIP Conf. Proc. No. 75, 170 (1981).
    [Crossref]
  13. T. W. Barbee, “Multilayers for X-Ray Optical Applications,” in X-ray Microscopy, G. Schmal, D. Rudolph, Eds. (Springer, New York, 1984), p. 144.
  14. T. W. Barbee, “Layered Synthetic Microstructures: Potential for Application in Free-Electron Laser Development,” AIP Conf. Proc. No. 118, 53 (1984).
    [Crossref]
  15. L. Golub, E. Spiller, R. J. Bartlett, M. Hockaday, D. R. Kania, W. J. Trela, “X-ray Tests of Multilayer Coated Optics,” in Technical Digest, Third Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, D.C., 1984), paper TuA-B3.
  16. J. H. Underwood, T. W. Barbee, D. L. Shealy, “X-Ray and Extreme Ultraviolet Imaging using Layered Synthetic Microstructures,” Proc. Soc. Photo-Opt. Instrum. Eng. 316, 79 (1982).
  17. R. A. Stern, B. M. Haisch, E. G. Joki, R. C. Catura, “Normal Incidence Multilayer Mirrors for Extreme Ultraviolet Astronomy,” Proc. Soc. Photo-Opt. Instrum. Eng. 445, 347 (1984).
  18. J. H. Underwood, T. W. Barbee, “Soft X-Ray Imaging with a Normal Incidence Mirror,” Nature London 294, 429 (1981).
    [Crossref]
  19. A. Segmüller, “Small-Angle Interferences of X-Rays Reflected from Periodic and Near-Periodic Multilayers,” AIP Conf. Proc. No. 53, 78 (1979).
    [Crossref]
  20. A. E. Rosenbluth, “Reflecting Properties of X-Ray Multilayer Devices,” Thesis, U. Rochester (1982).
  21. T. W. Barbee, D. L. Keith, “Synthesis of Metastable Materials by Sputter Deposition Techniques,” in Synthesis and Properties of Metastable Phases, E. S. Machlin, T. J. Rowland, Eds. (AIME, New York, 1980), p. 93.
  22. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering and Reflection. E = 100–2000 eV Z = 1–94,” At. Data Nucl. Data Tables 27, (1982).
  23. Obtained from General Optics, 554 Flinn Ave., Moorpark, Calif. 93021.
  24. A. Guinier, X-ray Diffraction (Freeman, San Francisco, 1963), Chap. 5.

1984 (2)

T. W. Barbee, “Layered Synthetic Microstructures: Potential for Application in Free-Electron Laser Development,” AIP Conf. Proc. No. 118, 53 (1984).
[Crossref]

R. A. Stern, B. M. Haisch, E. G. Joki, R. C. Catura, “Normal Incidence Multilayer Mirrors for Extreme Ultraviolet Astronomy,” Proc. Soc. Photo-Opt. Instrum. Eng. 445, 347 (1984).

1982 (2)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering and Reflection. E = 100–2000 eV Z = 1–94,” At. Data Nucl. Data Tables 27, (1982).

J. H. Underwood, T. W. Barbee, D. L. Shealy, “X-Ray and Extreme Ultraviolet Imaging using Layered Synthetic Microstructures,” Proc. Soc. Photo-Opt. Instrum. Eng. 316, 79 (1982).

1981 (5)

T. W. Barbee, “Sputtered Layered Synthetic Microstructure (LSM) Dispersion Elements,” AIP Conf. Proc. No. 75, 131 (1981).
[Crossref]

E. Spiller, “Evaporated Multilayer Dispersion Elements for Soft X-Rays,” AIP Conf. Proc. No. 75, 125 (1981).

B. L. Henke, “Synthetic Multilayers as Bragg Diffractors for X-Rays and Extreme Ultraviolet: Calculations and Performance,” AIP Conf. Proc. No. 75, 85 (1981).
[Crossref]

J. H. Underwood, T. W. Barbee, “Low Energy X-Ray Spectroscopy with Crystals and Multilayers,” AIP Conf. Proc. No. 75, 170 (1981).
[Crossref]

J. H. Underwood, T. W. Barbee, “Soft X-Ray Imaging with a Normal Incidence Mirror,” Nature London 294, 429 (1981).
[Crossref]

1980 (1)

E. Spiller, A. Segmüller, R.-P. Haelbich, “The Fabrication of Multilayer X-Ray Mirrors,” in Conference on Ultrasoft X-ray Microscopy, June 1979, D. F. Parsons, Ed., Ann. N.Y. Acad. Sci. (1980).

1979 (2)

A. Segmüller, “Small-Angle Interferences of X-Rays Reflected from Periodic and Near-Periodic Multilayers,” AIP Conf. Proc. No. 53, 78 (1979).
[Crossref]

R.-P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184 (1979).
[Crossref]

1976 (2)

R.-P. Haelbich, C. Kunz, “Multilayer Interference Mirrors for the XUV Range Around 100-eV Photon Energy,” Opt. Commun. 17, 287 (1976).
[Crossref]

E. Spiller, “Reflective Multilayer Coatings for the Far UV Region,” Appl. Opt. 15, 2333 (1976).
[Crossref] [PubMed]

1967 (1)

J. Dinklage, “X-Ray Diffraction by Multilayered Thin Film Structures and their Diffusion,” J. Appl. Phys. 38, 3781 (1967).
[Crossref]

1963 (1)

J. Dinklage, R. Frerichs, “X-Ray Diffraction and Diffusion in Metal Film Layered Structures,” J. Appl. Phys. 34, 2633 (1963).
[Crossref]

1940 (1)

J. Dumond, J. P. Youtz, “An X-Ray Method of Determining Rates of Diffusion in the Solid State,” J. Appl. Phys. 11, 357 (1940).
[Crossref]

Barbee, T. W.

T. W. Barbee, “Layered Synthetic Microstructures: Potential for Application in Free-Electron Laser Development,” AIP Conf. Proc. No. 118, 53 (1984).
[Crossref]

J. H. Underwood, T. W. Barbee, D. L. Shealy, “X-Ray and Extreme Ultraviolet Imaging using Layered Synthetic Microstructures,” Proc. Soc. Photo-Opt. Instrum. Eng. 316, 79 (1982).

J. H. Underwood, T. W. Barbee, “Soft X-Ray Imaging with a Normal Incidence Mirror,” Nature London 294, 429 (1981).
[Crossref]

T. W. Barbee, “Sputtered Layered Synthetic Microstructure (LSM) Dispersion Elements,” AIP Conf. Proc. No. 75, 131 (1981).
[Crossref]

J. H. Underwood, T. W. Barbee, “Low Energy X-Ray Spectroscopy with Crystals and Multilayers,” AIP Conf. Proc. No. 75, 170 (1981).
[Crossref]

T. W. Barbee, “Multilayers for X-Ray Optical Applications,” in X-ray Microscopy, G. Schmal, D. Rudolph, Eds. (Springer, New York, 1984), p. 144.

T. W. Barbee, D. L. Keith, “Synthesis of Metastable Materials by Sputter Deposition Techniques,” in Synthesis and Properties of Metastable Phases, E. S. Machlin, T. J. Rowland, Eds. (AIME, New York, 1980), p. 93.

Bartlett, R. J.

L. Golub, E. Spiller, R. J. Bartlett, M. Hockaday, D. R. Kania, W. J. Trela, “X-ray Tests of Multilayer Coated Optics,” in Technical Digest, Third Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, D.C., 1984), paper TuA-B3.

Catura, R. C.

R. A. Stern, B. M. Haisch, E. G. Joki, R. C. Catura, “Normal Incidence Multilayer Mirrors for Extreme Ultraviolet Astronomy,” Proc. Soc. Photo-Opt. Instrum. Eng. 445, 347 (1984).

Dinklage, J.

J. Dinklage, “X-Ray Diffraction by Multilayered Thin Film Structures and their Diffusion,” J. Appl. Phys. 38, 3781 (1967).
[Crossref]

J. Dinklage, R. Frerichs, “X-Ray Diffraction and Diffusion in Metal Film Layered Structures,” J. Appl. Phys. 34, 2633 (1963).
[Crossref]

Dumond, J.

J. Dumond, J. P. Youtz, “An X-Ray Method of Determining Rates of Diffusion in the Solid State,” J. Appl. Phys. 11, 357 (1940).
[Crossref]

Frerichs, R.

J. Dinklage, R. Frerichs, “X-Ray Diffraction and Diffusion in Metal Film Layered Structures,” J. Appl. Phys. 34, 2633 (1963).
[Crossref]

Fujikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering and Reflection. E = 100–2000 eV Z = 1–94,” At. Data Nucl. Data Tables 27, (1982).

Golub, L.

L. Golub, E. Spiller, R. J. Bartlett, M. Hockaday, D. R. Kania, W. J. Trela, “X-ray Tests of Multilayer Coated Optics,” in Technical Digest, Third Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, D.C., 1984), paper TuA-B3.

Guinier, A.

A. Guinier, X-ray Diffraction (Freeman, San Francisco, 1963), Chap. 5.

Haelbich, R.-P.

E. Spiller, A. Segmüller, R.-P. Haelbich, “The Fabrication of Multilayer X-Ray Mirrors,” in Conference on Ultrasoft X-ray Microscopy, June 1979, D. F. Parsons, Ed., Ann. N.Y. Acad. Sci. (1980).

R.-P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184 (1979).
[Crossref]

R.-P. Haelbich, C. Kunz, “Multilayer Interference Mirrors for the XUV Range Around 100-eV Photon Energy,” Opt. Commun. 17, 287 (1976).
[Crossref]

Haisch, B. M.

R. A. Stern, B. M. Haisch, E. G. Joki, R. C. Catura, “Normal Incidence Multilayer Mirrors for Extreme Ultraviolet Astronomy,” Proc. Soc. Photo-Opt. Instrum. Eng. 445, 347 (1984).

Henke, B. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering and Reflection. E = 100–2000 eV Z = 1–94,” At. Data Nucl. Data Tables 27, (1982).

B. L. Henke, “Synthetic Multilayers as Bragg Diffractors for X-Rays and Extreme Ultraviolet: Calculations and Performance,” AIP Conf. Proc. No. 75, 85 (1981).
[Crossref]

Hockaday, M.

L. Golub, E. Spiller, R. J. Bartlett, M. Hockaday, D. R. Kania, W. J. Trela, “X-ray Tests of Multilayer Coated Optics,” in Technical Digest, Third Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, D.C., 1984), paper TuA-B3.

Joki, E. G.

R. A. Stern, B. M. Haisch, E. G. Joki, R. C. Catura, “Normal Incidence Multilayer Mirrors for Extreme Ultraviolet Astronomy,” Proc. Soc. Photo-Opt. Instrum. Eng. 445, 347 (1984).

Kania, D. R.

L. Golub, E. Spiller, R. J. Bartlett, M. Hockaday, D. R. Kania, W. J. Trela, “X-ray Tests of Multilayer Coated Optics,” in Technical Digest, Third Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, D.C., 1984), paper TuA-B3.

Keith, D. L.

T. W. Barbee, D. L. Keith, “Synthesis of Metastable Materials by Sputter Deposition Techniques,” in Synthesis and Properties of Metastable Phases, E. S. Machlin, T. J. Rowland, Eds. (AIME, New York, 1980), p. 93.

Kunz, C.

R.-P. Haelbich, C. Kunz, “Multilayer Interference Mirrors for the XUV Range Around 100-eV Photon Energy,” Opt. Commun. 17, 287 (1976).
[Crossref]

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering and Reflection. E = 100–2000 eV Z = 1–94,” At. Data Nucl. Data Tables 27, (1982).

Rosenbluth, A. E.

A. E. Rosenbluth, “Reflecting Properties of X-Ray Multilayer Devices,” Thesis, U. Rochester (1982).

Segmuller, A.

R.-P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184 (1979).
[Crossref]

Segmüller, A.

E. Spiller, A. Segmüller, R.-P. Haelbich, “The Fabrication of Multilayer X-Ray Mirrors,” in Conference on Ultrasoft X-ray Microscopy, June 1979, D. F. Parsons, Ed., Ann. N.Y. Acad. Sci. (1980).

A. Segmüller, “Small-Angle Interferences of X-Rays Reflected from Periodic and Near-Periodic Multilayers,” AIP Conf. Proc. No. 53, 78 (1979).
[Crossref]

Shealy, D. L.

J. H. Underwood, T. W. Barbee, D. L. Shealy, “X-Ray and Extreme Ultraviolet Imaging using Layered Synthetic Microstructures,” Proc. Soc. Photo-Opt. Instrum. Eng. 316, 79 (1982).

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering and Reflection. E = 100–2000 eV Z = 1–94,” At. Data Nucl. Data Tables 27, (1982).

Spiller, E.

E. Spiller, “Evaporated Multilayer Dispersion Elements for Soft X-Rays,” AIP Conf. Proc. No. 75, 125 (1981).

E. Spiller, A. Segmüller, R.-P. Haelbich, “The Fabrication of Multilayer X-Ray Mirrors,” in Conference on Ultrasoft X-ray Microscopy, June 1979, D. F. Parsons, Ed., Ann. N.Y. Acad. Sci. (1980).

R.-P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184 (1979).
[Crossref]

E. Spiller, “Reflective Multilayer Coatings for the Far UV Region,” Appl. Opt. 15, 2333 (1976).
[Crossref] [PubMed]

E. Spiller, “Multilayer Interference Coatings for the Vacuum Ultraviolet,” in Space Optics, Proceedings, Ninth ICO, Santa Monica 1972, (National Academy of Science, Washington, D.C., 1974), p. 581.

L. Golub, E. Spiller, R. J. Bartlett, M. Hockaday, D. R. Kania, W. J. Trela, “X-ray Tests of Multilayer Coated Optics,” in Technical Digest, Third Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, D.C., 1984), paper TuA-B3.

Stern, R. A.

R. A. Stern, B. M. Haisch, E. G. Joki, R. C. Catura, “Normal Incidence Multilayer Mirrors for Extreme Ultraviolet Astronomy,” Proc. Soc. Photo-Opt. Instrum. Eng. 445, 347 (1984).

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering and Reflection. E = 100–2000 eV Z = 1–94,” At. Data Nucl. Data Tables 27, (1982).

Trela, W. J.

L. Golub, E. Spiller, R. J. Bartlett, M. Hockaday, D. R. Kania, W. J. Trela, “X-ray Tests of Multilayer Coated Optics,” in Technical Digest, Third Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, D.C., 1984), paper TuA-B3.

Underwood, J. H.

J. H. Underwood, T. W. Barbee, D. L. Shealy, “X-Ray and Extreme Ultraviolet Imaging using Layered Synthetic Microstructures,” Proc. Soc. Photo-Opt. Instrum. Eng. 316, 79 (1982).

J. H. Underwood, T. W. Barbee, “Low Energy X-Ray Spectroscopy with Crystals and Multilayers,” AIP Conf. Proc. No. 75, 170 (1981).
[Crossref]

J. H. Underwood, T. W. Barbee, “Soft X-Ray Imaging with a Normal Incidence Mirror,” Nature London 294, 429 (1981).
[Crossref]

Youtz, J. P.

J. Dumond, J. P. Youtz, “An X-Ray Method of Determining Rates of Diffusion in the Solid State,” J. Appl. Phys. 11, 357 (1940).
[Crossref]

AIP Conf. Proc. No. 118 (1)

T. W. Barbee, “Layered Synthetic Microstructures: Potential for Application in Free-Electron Laser Development,” AIP Conf. Proc. No. 118, 53 (1984).
[Crossref]

AIP Conf. Proc. No. 53 (1)

A. Segmüller, “Small-Angle Interferences of X-Rays Reflected from Periodic and Near-Periodic Multilayers,” AIP Conf. Proc. No. 53, 78 (1979).
[Crossref]

AIP Conf. Proc. No. 75 (4)

T. W. Barbee, “Sputtered Layered Synthetic Microstructure (LSM) Dispersion Elements,” AIP Conf. Proc. No. 75, 131 (1981).
[Crossref]

E. Spiller, “Evaporated Multilayer Dispersion Elements for Soft X-Rays,” AIP Conf. Proc. No. 75, 125 (1981).

B. L. Henke, “Synthetic Multilayers as Bragg Diffractors for X-Rays and Extreme Ultraviolet: Calculations and Performance,” AIP Conf. Proc. No. 75, 85 (1981).
[Crossref]

J. H. Underwood, T. W. Barbee, “Low Energy X-Ray Spectroscopy with Crystals and Multilayers,” AIP Conf. Proc. No. 75, 170 (1981).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R.-P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184 (1979).
[Crossref]

At. Data Nucl. Data Tables (1)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering and Reflection. E = 100–2000 eV Z = 1–94,” At. Data Nucl. Data Tables 27, (1982).

Conference on Ultrasoft X-ray Microscopy, June 1979 (1)

E. Spiller, A. Segmüller, R.-P. Haelbich, “The Fabrication of Multilayer X-Ray Mirrors,” in Conference on Ultrasoft X-ray Microscopy, June 1979, D. F. Parsons, Ed., Ann. N.Y. Acad. Sci. (1980).

J. Appl. Phys. (3)

J. Dumond, J. P. Youtz, “An X-Ray Method of Determining Rates of Diffusion in the Solid State,” J. Appl. Phys. 11, 357 (1940).
[Crossref]

J. Dinklage, R. Frerichs, “X-Ray Diffraction and Diffusion in Metal Film Layered Structures,” J. Appl. Phys. 34, 2633 (1963).
[Crossref]

J. Dinklage, “X-Ray Diffraction by Multilayered Thin Film Structures and their Diffusion,” J. Appl. Phys. 38, 3781 (1967).
[Crossref]

Nature London (1)

J. H. Underwood, T. W. Barbee, “Soft X-Ray Imaging with a Normal Incidence Mirror,” Nature London 294, 429 (1981).
[Crossref]

Opt. Commun. (1)

R.-P. Haelbich, C. Kunz, “Multilayer Interference Mirrors for the XUV Range Around 100-eV Photon Energy,” Opt. Commun. 17, 287 (1976).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

J. H. Underwood, T. W. Barbee, D. L. Shealy, “X-Ray and Extreme Ultraviolet Imaging using Layered Synthetic Microstructures,” Proc. Soc. Photo-Opt. Instrum. Eng. 316, 79 (1982).

R. A. Stern, B. M. Haisch, E. G. Joki, R. C. Catura, “Normal Incidence Multilayer Mirrors for Extreme Ultraviolet Astronomy,” Proc. Soc. Photo-Opt. Instrum. Eng. 445, 347 (1984).

Other (7)

L. Golub, E. Spiller, R. J. Bartlett, M. Hockaday, D. R. Kania, W. J. Trela, “X-ray Tests of Multilayer Coated Optics,” in Technical Digest, Third Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, D.C., 1984), paper TuA-B3.

T. W. Barbee, “Multilayers for X-Ray Optical Applications,” in X-ray Microscopy, G. Schmal, D. Rudolph, Eds. (Springer, New York, 1984), p. 144.

E. Spiller, “Multilayer Interference Coatings for the Vacuum Ultraviolet,” in Space Optics, Proceedings, Ninth ICO, Santa Monica 1972, (National Academy of Science, Washington, D.C., 1974), p. 581.

Obtained from General Optics, 554 Flinn Ave., Moorpark, Calif. 93021.

A. Guinier, X-ray Diffraction (Freeman, San Francisco, 1963), Chap. 5.

A. E. Rosenbluth, “Reflecting Properties of X-Ray Multilayer Devices,” Thesis, U. Rochester (1982).

T. W. Barbee, D. L. Keith, “Synthesis of Metastable Materials by Sputter Deposition Techniques,” in Synthesis and Properties of Metastable Phases, E. S. Machlin, T. J. Rowland, Eds. (AIME, New York, 1980), p. 93.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental continuous scan reflectivity of 170.4-Å light by a molybdenum-silicon multilayer [84049-2(F)] containing twenty layer pairs (Mo/Si) of thicknesses tm0 = 40.6 Å and tSi = 60.3 Å is shown as a function of the angle ϕ relative to normal incidence and compared to calculated reflectivity using the optical constants δm0 = 0.141, βm0 = 0.0334, δsi = 0.0248, and βsi = 0.003. The multilayer sample was terminated with a molybdenum layer and overcoat with 5-Å carbon to limit front surface deterioration.

Fig. 2
Fig. 2

Experimental continuous scan reflectivity of 160.1-Å light by a molybdenum-silicon multilayer [84049-2(F)] containing twenty layer pairs (Mo/Si) of thicknesses tm0 = 40.6 Å and tsi = 60.3 Å is shown as a function of the angle ϕ relative to normal incidence and compared to reflectivity calculated using the optical constants δm0 = 0.122, βm0 = 0.0226,δsi = 0.0218, and βsi = 0.026. The multilayer sample was terminated with a molybdenum layer and overcoated with 5-Å carbon to limit front surface deterioration.

Fig. 3
Fig. 3

Experimental continuous scan reflectivity of 170.4-Å light by a molybdenum-silicon multilayer [84049-3(F)] containing twenty layer pairs (Mo/Si) of thicknesses tm0 = 38.2 Å and tsi = 65.8 Å is shown as a function of the angle ϕ relative to normal incidence and compared to calculated reflectivity using the optical constants δm0 −= 0.141,βm0 = 0.0334,δsi = 0.0248, and βsi = 0.003. The multilayer sample was terminated with a molybdenum layer and overcoated with 5-Å carbon to limit front surface deterioration.

Tables (2)

Tables Icon

Table I Structural Parameters of the Molybdenum-Silicon Multilayer Samples on Flat Substrates

Tables Icon

Table II Sample Numbers, Experimental Wavelengths λ, Experimental (ϕexp) and Calculated (ϕc) Angular Positions (Relative to Normal Incidence) of the Peak Reflectivities, Experimental (Δϕexp) and Calculated (Δϕc) FWHM, Experimental (Rexp) and Calculated (Rc) Reflectivities at Angles ϕexp and ϕc, Respectively, and Type of Measurement

Metrics