Abstract

A large scale laser radar was constructed to measure aerosol distribution over a wide area. It is composed of a high-power YAG laser with an average output energy of 30 W (at 1.064 μm) and 10 W (at 532 nm) a 25-pps repetition rate, and a large (effective diameter 1.5 m) receiving telescope. Three problems which degrade the accuracy of the measurement are noted, and a discussion of how to improve the accuracy of the system is included. Noise analysis shows that this system works within theoretical limits.

© 1985 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber multifunction continuous-wave coherent laser radar at 1.55 µm for range, speed, vibration, and wind measurements

Christer J. Karlsson, Fredrik Å. A. Olsson, Dietmar Letalick, and Michael Harris
Appl. Opt. 39(21) 3716-3726 (2000)

Measured signal amplitude distributions for a coherent FM-cw CO2 laser radar

Dietmar Letalick, Ingmar Renhorn, and Ove Steinvall
Appl. Opt. 25(21) 3927-3938 (1986)

Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar

James D. Spinhirne, S. Chudamani, John F. Cavanaugh, and Jack L. Bufton
Appl. Opt. 36(15) 3475-3490 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription