Abstract

A practical engineering model that predicts the thermal radiation distributions for a wide variety of scenes and a digital capability to simulate thermal imagery on a medium size computer was originated. Via memory conserving processing techniques the time necessary to computer generate the imagery is drastically reduced compared with standard methods. In certain conditions real-time picture creation (30 frames/sec) might be achieved.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Z. Kneizys et al., Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 6, Air Force Geophysics Laboratory Project 7670 Hanscom AFB, Mass. 01731.
  2. J. D. Foley, A. VanDam, Fundamentals of Interactive Computer Graphics (Addison-Wesley, Reading, Mass., 1982).
  3. J. B. Tucker, “Computer Graphics Achieves New Realism,” High Technol.40 (June1984).
  4. J. B. Tucker, “Visual Simulation Takes Flight,” High Technol.34 (Dec.1984).
  5. Multiprocessor Z—Buffer Architecture for High Speed, High Complexity Computer Image Generation, contract MDA 903-82-C-0101, Advanced Computer Graphics Technology, Boeing Aerospace Co., Seattle, Wash.
  6. G. Y. Gardner, “Simulation of Natural Scenes Using Texture Quadratic Surfaces,” Comput. Graphics 18, No. 13, 11 (July1984).
    [CrossRef]
  7. G. R. Loefer, D. E. Schmieder, W. M. Finley, M. R. Weatherby, “Background Clutter Model Using 3D Computer Graphics,” Comput. Graphics Appl.55 (Mar./Apr.1983).
    [CrossRef]
  8. M. H. Crowell, P. A. Frazier, D. L. Flynn, Calibration of a Thermodynamic Armoured Vehicle and Environmental Thermal Signature Model for the M60 Tank, Systems Planning Corp., DAAK70-79-C-0205 (Jan.1980).
  9. D. S. Kimes, J. A. Smith, L. E. Link, “Thermal IR Existance Model of a Plant Canopy,” Appl. Opt. 20, 623 (1981).
    [CrossRef] [PubMed]
  10. L. K. Balick, R. K. Scoggins, L. E. Link, “Inclusion of a Simple Vegetation Layer in Terrain Temperature Models for Thermal IR Signature Prediction,” IEEE Trans. Geosc. Remote Sensing GE-19, 143 (1981).
    [CrossRef]
  11. J. A. Smith, K. J. Ranson, D. Nguyen, L. Balick, L. E. Link, “Thermal Vegetation Canopy Model Studies,” Remote Sensing Environ. 11, 311 (1981).
    [CrossRef]
  12. A. Ben Shalom, D. Cabib, D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheimer, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the Region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165 (1980).
    [CrossRef]

1984 (3)

J. B. Tucker, “Computer Graphics Achieves New Realism,” High Technol.40 (June1984).

J. B. Tucker, “Visual Simulation Takes Flight,” High Technol.34 (Dec.1984).

G. Y. Gardner, “Simulation of Natural Scenes Using Texture Quadratic Surfaces,” Comput. Graphics 18, No. 13, 11 (July1984).
[CrossRef]

1983 (1)

G. R. Loefer, D. E. Schmieder, W. M. Finley, M. R. Weatherby, “Background Clutter Model Using 3D Computer Graphics,” Comput. Graphics Appl.55 (Mar./Apr.1983).
[CrossRef]

1981 (3)

L. K. Balick, R. K. Scoggins, L. E. Link, “Inclusion of a Simple Vegetation Layer in Terrain Temperature Models for Thermal IR Signature Prediction,” IEEE Trans. Geosc. Remote Sensing GE-19, 143 (1981).
[CrossRef]

J. A. Smith, K. J. Ranson, D. Nguyen, L. Balick, L. E. Link, “Thermal Vegetation Canopy Model Studies,” Remote Sensing Environ. 11, 311 (1981).
[CrossRef]

D. S. Kimes, J. A. Smith, L. E. Link, “Thermal IR Existance Model of a Plant Canopy,” Appl. Opt. 20, 623 (1981).
[CrossRef] [PubMed]

1980 (1)

A. Ben Shalom, D. Cabib, D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheimer, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the Region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165 (1980).
[CrossRef]

Balick, L.

J. A. Smith, K. J. Ranson, D. Nguyen, L. Balick, L. E. Link, “Thermal Vegetation Canopy Model Studies,” Remote Sensing Environ. 11, 311 (1981).
[CrossRef]

Balick, L. K.

L. K. Balick, R. K. Scoggins, L. E. Link, “Inclusion of a Simple Vegetation Layer in Terrain Temperature Models for Thermal IR Signature Prediction,” IEEE Trans. Geosc. Remote Sensing GE-19, 143 (1981).
[CrossRef]

Ben Shalom, A.

A. Ben Shalom, D. Cabib, D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheimer, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the Region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165 (1980).
[CrossRef]

Cabib, D.

A. Ben Shalom, D. Cabib, D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheimer, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the Region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165 (1980).
[CrossRef]

Crowell, M. H.

M. H. Crowell, P. A. Frazier, D. L. Flynn, Calibration of a Thermodynamic Armoured Vehicle and Environmental Thermal Signature Model for the M60 Tank, Systems Planning Corp., DAAK70-79-C-0205 (Jan.1980).

Devir, D.

A. Ben Shalom, D. Cabib, D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheimer, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the Region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165 (1980).
[CrossRef]

Finley, W. M.

G. R. Loefer, D. E. Schmieder, W. M. Finley, M. R. Weatherby, “Background Clutter Model Using 3D Computer Graphics,” Comput. Graphics Appl.55 (Mar./Apr.1983).
[CrossRef]

Flynn, D. L.

M. H. Crowell, P. A. Frazier, D. L. Flynn, Calibration of a Thermodynamic Armoured Vehicle and Environmental Thermal Signature Model for the M60 Tank, Systems Planning Corp., DAAK70-79-C-0205 (Jan.1980).

Foley, J. D.

J. D. Foley, A. VanDam, Fundamentals of Interactive Computer Graphics (Addison-Wesley, Reading, Mass., 1982).

Frazier, P. A.

M. H. Crowell, P. A. Frazier, D. L. Flynn, Calibration of a Thermodynamic Armoured Vehicle and Environmental Thermal Signature Model for the M60 Tank, Systems Planning Corp., DAAK70-79-C-0205 (Jan.1980).

Gardner, G. Y.

G. Y. Gardner, “Simulation of Natural Scenes Using Texture Quadratic Surfaces,” Comput. Graphics 18, No. 13, 11 (July1984).
[CrossRef]

Goldschmidt, D.

A. Ben Shalom, D. Cabib, D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheimer, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the Region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165 (1980).
[CrossRef]

Kimes, D. S.

Kneizys, R. Z.

R. Z. Kneizys et al., Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 6, Air Force Geophysics Laboratory Project 7670 Hanscom AFB, Mass. 01731.

Link, L. E.

J. A. Smith, K. J. Ranson, D. Nguyen, L. Balick, L. E. Link, “Thermal Vegetation Canopy Model Studies,” Remote Sensing Environ. 11, 311 (1981).
[CrossRef]

L. K. Balick, R. K. Scoggins, L. E. Link, “Inclusion of a Simple Vegetation Layer in Terrain Temperature Models for Thermal IR Signature Prediction,” IEEE Trans. Geosc. Remote Sensing GE-19, 143 (1981).
[CrossRef]

D. S. Kimes, J. A. Smith, L. E. Link, “Thermal IR Existance Model of a Plant Canopy,” Appl. Opt. 20, 623 (1981).
[CrossRef] [PubMed]

Lipson, S. G.

A. Ben Shalom, D. Cabib, D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheimer, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the Region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165 (1980).
[CrossRef]

Loefer, G. R.

G. R. Loefer, D. E. Schmieder, W. M. Finley, M. R. Weatherby, “Background Clutter Model Using 3D Computer Graphics,” Comput. Graphics Appl.55 (Mar./Apr.1983).
[CrossRef]

Nguyen, D.

J. A. Smith, K. J. Ranson, D. Nguyen, L. Balick, L. E. Link, “Thermal Vegetation Canopy Model Studies,” Remote Sensing Environ. 11, 311 (1981).
[CrossRef]

Oppenheimer, U. P.

A. Ben Shalom, D. Cabib, D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheimer, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the Region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165 (1980).
[CrossRef]

Ranson, K. J.

J. A. Smith, K. J. Ranson, D. Nguyen, L. Balick, L. E. Link, “Thermal Vegetation Canopy Model Studies,” Remote Sensing Environ. 11, 311 (1981).
[CrossRef]

Schmieder, D. E.

G. R. Loefer, D. E. Schmieder, W. M. Finley, M. R. Weatherby, “Background Clutter Model Using 3D Computer Graphics,” Comput. Graphics Appl.55 (Mar./Apr.1983).
[CrossRef]

Scoggins, R. K.

L. K. Balick, R. K. Scoggins, L. E. Link, “Inclusion of a Simple Vegetation Layer in Terrain Temperature Models for Thermal IR Signature Prediction,” IEEE Trans. Geosc. Remote Sensing GE-19, 143 (1981).
[CrossRef]

Smith, J. A.

J. A. Smith, K. J. Ranson, D. Nguyen, L. Balick, L. E. Link, “Thermal Vegetation Canopy Model Studies,” Remote Sensing Environ. 11, 311 (1981).
[CrossRef]

D. S. Kimes, J. A. Smith, L. E. Link, “Thermal IR Existance Model of a Plant Canopy,” Appl. Opt. 20, 623 (1981).
[CrossRef] [PubMed]

Tucker, J. B.

J. B. Tucker, “Computer Graphics Achieves New Realism,” High Technol.40 (June1984).

J. B. Tucker, “Visual Simulation Takes Flight,” High Technol.34 (Dec.1984).

VanDam, A.

J. D. Foley, A. VanDam, Fundamentals of Interactive Computer Graphics (Addison-Wesley, Reading, Mass., 1982).

Weatherby, M. R.

G. R. Loefer, D. E. Schmieder, W. M. Finley, M. R. Weatherby, “Background Clutter Model Using 3D Computer Graphics,” Comput. Graphics Appl.55 (Mar./Apr.1983).
[CrossRef]

Appl. Opt. (1)

Comput. Graphics (1)

G. Y. Gardner, “Simulation of Natural Scenes Using Texture Quadratic Surfaces,” Comput. Graphics 18, No. 13, 11 (July1984).
[CrossRef]

Comput. Graphics Appl. (1)

G. R. Loefer, D. E. Schmieder, W. M. Finley, M. R. Weatherby, “Background Clutter Model Using 3D Computer Graphics,” Comput. Graphics Appl.55 (Mar./Apr.1983).
[CrossRef]

High Technol. (2)

J. B. Tucker, “Computer Graphics Achieves New Realism,” High Technol.40 (June1984).

J. B. Tucker, “Visual Simulation Takes Flight,” High Technol.34 (Dec.1984).

IEEE Trans. Geosc. Remote Sensing (1)

L. K. Balick, R. K. Scoggins, L. E. Link, “Inclusion of a Simple Vegetation Layer in Terrain Temperature Models for Thermal IR Signature Prediction,” IEEE Trans. Geosc. Remote Sensing GE-19, 143 (1981).
[CrossRef]

Infrared Phys. (1)

A. Ben Shalom, D. Cabib, D. Devir, D. Goldschmidt, S. G. Lipson, U. P. Oppenheimer, “Spectral Characteristics of Infrared Transmittance of the Atmosphere in the Region 2.8–14 μm—Preliminary Measurements,” Infrared Phys. 20, 165 (1980).
[CrossRef]

Remote Sensing Environ. (1)

J. A. Smith, K. J. Ranson, D. Nguyen, L. Balick, L. E. Link, “Thermal Vegetation Canopy Model Studies,” Remote Sensing Environ. 11, 311 (1981).
[CrossRef]

Other (4)

M. H. Crowell, P. A. Frazier, D. L. Flynn, Calibration of a Thermodynamic Armoured Vehicle and Environmental Thermal Signature Model for the M60 Tank, Systems Planning Corp., DAAK70-79-C-0205 (Jan.1980).

Multiprocessor Z—Buffer Architecture for High Speed, High Complexity Computer Image Generation, contract MDA 903-82-C-0101, Advanced Computer Graphics Technology, Boeing Aerospace Co., Seattle, Wash.

R. Z. Kneizys et al., Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 6, Air Force Geophysics Laboratory Project 7670 Hanscom AFB, Mass. 01731.

J. D. Foley, A. VanDam, Fundamentals of Interactive Computer Graphics (Addison-Wesley, Reading, Mass., 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimentally established signature measured with a ser: al scan sensor (10 sec/frame).

Fig. 2
Fig. 2

Schematic of crest lines structure.

Fig. 3
Fig. 3

Computer generated landscape that simulates the thermal picture extracted from the focal plane of an idealized future sensor.

Fig. 4
Fig. 4

Simplified computer-generated landscape planned for the simulation of staring array thermal sensors.

Fig. 5
Fig. 5

Landscape of Fig. 4 degraded by staring array thermal sensors with fixed pattern noise of four different standard deviations.

Fig. 6
Fig. 6

Trade-off between detector size and noise of scanning array thermal sensors.

Tables (3)

Tables Icon

Table I Equivalence Statements Used for Bits Condensation

Tables Icon

Table II Illustrative Example of Bits Condensation

Tables Icon

Table III Comparison of LTR to lowtran 6

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

L r = E r / T 4 ,
m d T d t = E i + E 0 + E r + L c ( T T s )
P = P A + τ a ( P R P A ) ,
τ a = exp [ k ρ ( 1 k ) p 1 + b ( 1 k ) ρ ] ,
τ a = d λ E λ R S λ n + 1 N τ n / d λ E λ R S λ .
τ λ n = exp ( ρ e x ) .
σ m , Rh , λ = S ( M , Rh , λ ) σ vis .
σ IR = σ vis [ S ¯ A + ( S ¯ F S ¯ A ) / ( 1 + k V R EX ) ] , V R = Δ 3.912 / σ vis .
Y o ( X ) = Y o ( X Δ X ) exp ( Δ X / Γ ) + Y i ( X ) [ 1 exp ( Δ X / Γ ) ] .
X o = X o c + ( X i X i c ) [ S x + D x x ( X o X o c ) ] + D x y ( Y 0 Y o c ) ,
Y o = Y o c + ( Y i Y i c ) [ S y + D y y ( Y o Y o c ) ] + D y x ( X 0 X o c ) .

Metrics