Abstract

Infrared optical constants collected from the literature are tabulated for Mo and V. New data are presented for Cu, Fe, and Ni. Drude model parameters ωτ and ωp are given for the fourteen metals Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. The Drude model parameters for Cu are revised from our earlier tabulation due to the availability of additional data. Refinements in our fitting technique have resulted in only slight changes in the Drude model parameters for Al, Au, Ag, and W. The Drude model parameters for Pb correct a numerical error in our earlier tabulation. For all fourteen metals, the optical resistivity has been calculated from the Drude model parameters ωτ and ωp and compared to handbook values for the dc resistivity.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, C. A. Ward, “Optical Properties of the Metals Al, Co, Cu, Au, Fe, Pb, Ni, Pt, Ag, Ti, and W in the Infrared and Far Infrared,” Appl. Opt. 22, 1099 (1983).
    [CrossRef] [PubMed]
  2. J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physics Data, Optical Properties of Metals, Part I: The Transition-Metals (Fachinformationszentrum, 7514 Eggenatein-Leopoldshafen 2, Karlsruhe, Federal Republic of Germany, 1981).
  3. P. B. Johnson, R. W. Christy, “Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. 9, 5056 (1974).
    [CrossRef]
  4. T. J. Moravec, J. C. Rife, R. N. Dexter, “Optical Constants of Nickel, Iron, and Nickel-Iron Alloys in the Vacuum Ultraviolet,” Phys. Rev. B 13, 3297 (1976).
    [CrossRef]
  5. J. Babiskin, J. R. Anderson, Eds., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), pp. 9-39, 9-40.
  6. S. Perkowitz, G. L. Carr, B. Subramaniam, B. Mitrovic, “Far-infrared Determination of Scattering Behavior and Plasma Frequency in V3Si, Nb3Ge, and Hb,” Phys. Rev. B 32, 153 (1985).
    [CrossRef]

1985

S. Perkowitz, G. L. Carr, B. Subramaniam, B. Mitrovic, “Far-infrared Determination of Scattering Behavior and Plasma Frequency in V3Si, Nb3Ge, and Hb,” Phys. Rev. B 32, 153 (1985).
[CrossRef]

1983

1976

T. J. Moravec, J. C. Rife, R. N. Dexter, “Optical Constants of Nickel, Iron, and Nickel-Iron Alloys in the Vacuum Ultraviolet,” Phys. Rev. B 13, 3297 (1976).
[CrossRef]

1974

P. B. Johnson, R. W. Christy, “Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. 9, 5056 (1974).
[CrossRef]

Alexander, R. W.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Carr, G. L.

S. Perkowitz, G. L. Carr, B. Subramaniam, B. Mitrovic, “Far-infrared Determination of Scattering Behavior and Plasma Frequency in V3Si, Nb3Ge, and Hb,” Phys. Rev. B 32, 153 (1985).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. 9, 5056 (1974).
[CrossRef]

Dexter, R. N.

T. J. Moravec, J. C. Rife, R. N. Dexter, “Optical Constants of Nickel, Iron, and Nickel-Iron Alloys in the Vacuum Ultraviolet,” Phys. Rev. B 13, 3297 (1976).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. 9, 5056 (1974).
[CrossRef]

Koch, E. E.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physics Data, Optical Properties of Metals, Part I: The Transition-Metals (Fachinformationszentrum, 7514 Eggenatein-Leopoldshafen 2, Karlsruhe, Federal Republic of Germany, 1981).

Krafka, C.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physics Data, Optical Properties of Metals, Part I: The Transition-Metals (Fachinformationszentrum, 7514 Eggenatein-Leopoldshafen 2, Karlsruhe, Federal Republic of Germany, 1981).

Long, L. L.

Lynch, D. W.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physics Data, Optical Properties of Metals, Part I: The Transition-Metals (Fachinformationszentrum, 7514 Eggenatein-Leopoldshafen 2, Karlsruhe, Federal Republic of Germany, 1981).

Mitrovic, B.

S. Perkowitz, G. L. Carr, B. Subramaniam, B. Mitrovic, “Far-infrared Determination of Scattering Behavior and Plasma Frequency in V3Si, Nb3Ge, and Hb,” Phys. Rev. B 32, 153 (1985).
[CrossRef]

Moravec, T. J.

T. J. Moravec, J. C. Rife, R. N. Dexter, “Optical Constants of Nickel, Iron, and Nickel-Iron Alloys in the Vacuum Ultraviolet,” Phys. Rev. B 13, 3297 (1976).
[CrossRef]

Ordal, M. A.

Perkowitz, S.

S. Perkowitz, G. L. Carr, B. Subramaniam, B. Mitrovic, “Far-infrared Determination of Scattering Behavior and Plasma Frequency in V3Si, Nb3Ge, and Hb,” Phys. Rev. B 32, 153 (1985).
[CrossRef]

Rife, J. C.

T. J. Moravec, J. C. Rife, R. N. Dexter, “Optical Constants of Nickel, Iron, and Nickel-Iron Alloys in the Vacuum Ultraviolet,” Phys. Rev. B 13, 3297 (1976).
[CrossRef]

Subramaniam, B.

S. Perkowitz, G. L. Carr, B. Subramaniam, B. Mitrovic, “Far-infrared Determination of Scattering Behavior and Plasma Frequency in V3Si, Nb3Ge, and Hb,” Phys. Rev. B 32, 153 (1985).
[CrossRef]

Ward, C. A.

Weaver, J. H.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physics Data, Optical Properties of Metals, Part I: The Transition-Metals (Fachinformationszentrum, 7514 Eggenatein-Leopoldshafen 2, Karlsruhe, Federal Republic of Germany, 1981).

Appl. Opt.

Phys. Rev.

P. B. Johnson, R. W. Christy, “Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. 9, 5056 (1974).
[CrossRef]

Phys. Rev. B

T. J. Moravec, J. C. Rife, R. N. Dexter, “Optical Constants of Nickel, Iron, and Nickel-Iron Alloys in the Vacuum Ultraviolet,” Phys. Rev. B 13, 3297 (1976).
[CrossRef]

S. Perkowitz, G. L. Carr, B. Subramaniam, B. Mitrovic, “Far-infrared Determination of Scattering Behavior and Plasma Frequency in V3Si, Nb3Ge, and Hb,” Phys. Rev. B 32, 153 (1985).
[CrossRef]

Other

J. Babiskin, J. R. Anderson, Eds., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), pp. 9-39, 9-40.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physics Data, Optical Properties of Metals, Part I: The Transition-Metals (Fachinformationszentrum, 7514 Eggenatein-Leopoldshafen 2, Karlsruhe, Federal Republic of Germany, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Copper: −1(ω) and 2(ω) vs frequency. The dashed lines are the Drude model fit. The solid lines are our data. Data from Ref. 1: Schulz, ⋄ for both −1 and 2; Lenham and Treherne, * for −1 and 2; Robusto and Braunstein, □ for both; Hagemann et al., ○ for both; and Dold and Mecke, A for both. The dashed vertical line at 180 cm−1 marks the low frequency limit of our data.

Fig. 2
Fig. 2

Iron: −1(ω) and 2(ω) vs frequency. The dashed lines are the Drude model fit. The solid lines are our data. The data from Ref. 2 are: Weaver et al., dash–dot line for both −1 and 2; Bolotin et al., ⋄, for −1, and ○ for 2. The dashed vertical line at 180 cm−1 marks the low frequency limit of our data. The dashed vertical line at 807 cm−1 marks the low frequency limit of the Weaver et al. data.

Fig. 3
Fig. 3

Cobalt: −1(ω) and 2(ω) vs frequency. The dashed lines are the Drude model fit. Data from Ref. 1: Johnson and Christy, Δ for −1; X for 2; Weaver et al., ★ for −1, ⋄ for 2.

Fig. 4
Fig. 4

Nickel: −1(ω) and 2(ω) vs frequency. The dashed lines are the Drude model fit. The data from Ref. 1 are: Johnson and Christy, Δ for −1 and X for 2. The solid line shows our data. The dashed vertical line at 180 cm−1 markes the low frequency limit of our data. The dash–dot lines are the data from Ref. 2: Lynch et al. The dashed vertical line at 807 cm−1 marks the low frequency limit of the Lynch et al. data.

Fig. 5
Fig. 5

Palladium: −1(ω) and 2(ω) vs frequency. The dashed lines are the Drude model fit. The data from Ref. 1 are: Weaver and Benbow, dash–dot line for both −1and 2; Johnson and Christy, Δ for −1 and X for 2. The dashed vertical line at 807 cm−1 marks the low frequency limit of the Weaver and Benbow data.

Fig. 6
Fig. 6

Titanium: −1(ω) and 2(ω) vs frequency. The dashed lines are the Drude model fit. The data from Ref. 1 are: Kirillova and Charikov (Opt. Spectrosc), □ for −1and ⋄ for 2; Johnson and Christy, Δ for −1 and X for 2. The dash–dot lines are the data from Ref. 2: Lynch et al. The dashed vertical line at 807 cm−1 marks the low frequency limit of the Lynch et al. data.

Fig. 7
Fig. 7

Platinum: −1(ω) and 2(ω) vs frequency. The dashed lines are the Drude model fit. The data from Ref. 1 are: Weaver et al., ⋄ for −1 and □ for 2.

Fig. 8
Fig. 8

Molybdenum: −1(ω) and 2(ω) vs frequency. The dash lines are the Drude model fit. The dash–dot lines are the data from Ref. 2: Weaver et al. The dashed vertical line at 807 cm−1 marks the low frequency limit of the Weaver et al. data.

Fig. 9
Fig. 9

Vanadium: −1(ω) and 2(ω) vs frequency. The dashed lines are the Drude model fit. The solid lines are the data from Ref. 2: Weaver et al. The dash–dot lines are the data from Ref. 4: Johnson and Christy. The dashed vertical line at 807 cm−1 marks the low frequency limit of the Weaver et al. data.

Tables (6)

Tables Icon

Table I Results of a Drude Model Fit to the Dielectric Function of Fourteen Metals.a

Tables Icon

Table V Molybdenum: Weaver et al.a

Tables Icon

Table VI Vanadium: Weaver et al.a

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

c 1 + i 2 n c 2 ( n + i k ) 2 .
c = ω p 2 ω 2 + i ω ω τ ,
1 = ω p 2 ω 2 + ω τ 2 ,
2 = ω τ ω p 2 ω ( ω 2 + ω τ 2 ) .
ω p ( cm 1 ) = 1 2 π c ( 4 π N e 2 m * ) 1 / 2 ,
ω τ ( cm 1 ) = 1 2 π c τ ,
σ opt = ω p 2 4 π ω τ ,
σ 0 ( cm 1 ) = 1 2 π c [ ρ 0 ( sec ) ] = 9 × 10 11 2 π c [ ρ 0 ( Ω cm ) ] .
Z ( ω ) = 4 π c ( 1 i ) ( ω ω τ 2 ω p 2 ) ( 1 i ω ω τ ) .
R ( ω ) = 4 π c ω ω τ 2 ω p 2 ( ω ω τ + 1 + ω 2 ω τ 2 ) 1 / 2 .
X ( ω ) = 4 π c ω ω τ 2 ω p 2 ( ω w τ + 1 + ω 2 ω τ 2 ) 1 / 2 .
ω τ = ω 2 ( 1 ) .
ω p 2 = ( 1 ) ( ω 2 + ω τ 2 ) .
( 1 ) 2 + 2 2 = ω p 2 ω 2 + ω τ 2 1 + ( ω τ ω ) 2 .
1 = 2 ( for ω = ω τ ) .
ρ opt = 60 ω τ ω p 2 .

Metrics