Abstract

Several microwave absorbers have been characterized in terms of transmittance and reflectance at frequencies between 35 GHz and 3 THz. The materials studied were a series of iron-loaded cast epoxy absorbers known as Eccosorb. Measurements show that reflectance and absorption coefficient increase with the iron density. A dramatic decrease, by as much as a factor of 2, in absorption coefficient was observed when the samples were cooled from ambient to cryogenic temperatures. A blackbody calibrator to be operated at liquid helium temperature was constructed using the measured optical constants for these absorbers. The measured absorption coefficient for cold Eccosorb CR-110 is within 20% of that reported recently by Peterson and Richards.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Mather, “The Cosmic Background Explorer (COBE),” Opt. Eng. 21, 769 (1982).
    [Crossref]
  2. G. J. Simonis, “Index to Literature Dealing with the Near-Millimeter Wave Properties of Materials,” Int. J. Infrared Millimeter Waves 4, 439 (1982).
    [Crossref]
  3. J. R. Birch, “Optical Constants of Some Commercial Microwave Materials Between 90 and 1200 GHz,” IEE Proc. 130, 327 (1983).
  4. M. N. Afsar, K. J. Button, “Millimeter and Submillimeter Wave Measurements of Complex Optical and Dielectric parameters of Materials I,” Int. J. Infrared Millimeter Waves 2, 1029 (1981).
    [Crossref]
  5. G. J. Simonis et al., “Characterization of Near-Millimeter Wave Materials by Means of Non-dispersive Fourier Transform Spectroscopy,” Int. J. Infrared Millimeter Waves 5, 57 (1984).
    [Crossref]
  6. J. R. Birch, J. D. Dromey, J. Lesurp, “The Optical Constants of some Common Low Loss Polymers Between 4 and 40 cm−1,” Infrared Phys. 21, 225 (1981).
    [Crossref]
  7. M. N. Afsar, K. J. Button, “Millimeter and Submillimeter Wave Measurements of Complex Optical and Dielectric Parameters of Materials II,” Int. J. Infrared Millimeter Waves 2, 1029 (1981).
    [Crossref]
  8. Emerson, Cuming, Canton, Mass., “High-Loss Dielectric Microwave Absorbers,“ Technical Bulletin, 2-6 (Revised 1980).
  9. W. T. Welford, R. Winston, The Optics of Nonimaging Concentrators (Academic, New York, 1978).
  10. C. M. Randall, R. D. Rancliffe, “Refractive Indices of Germanium, Silicon, and Fused Quartz in the Far InR,” Appl. Opt. 6, 1889 (1967).
    [Crossref] [PubMed]
  11. K. R. Armstrong, F. J. Low, “New Techniques for Far Infrared Filters,” Appl. Opt. 12, 2007 (1973).
    [Crossref] [PubMed]
  12. J. Ibruegger, “Transmission of Room Temperature Radiation by Materials at Low Temperatures,” Int. J. Infrared Millimeter Waves 5, 655 (1984).
    [Crossref]
  13. J. B. Peterson, P. L. Richards, “A Cryogenic Blackbody for Millimeter Wavelengths,” Int. J. Infrared & Millimeter Waves 5, 1507 (1984).
    [Crossref]
  14. J. P. Peterson, P. L. Richards, T. Timusk, “Spectrum of the Cosmic Background at Millimeter Wavelengths,” Phys. Rev. Lett. 55, 332 (1985). This reference corrects the stated sample thicknesses in Ref. 13.
    [Crossref] [PubMed]

1985 (1)

J. P. Peterson, P. L. Richards, T. Timusk, “Spectrum of the Cosmic Background at Millimeter Wavelengths,” Phys. Rev. Lett. 55, 332 (1985). This reference corrects the stated sample thicknesses in Ref. 13.
[Crossref] [PubMed]

1984 (3)

J. Ibruegger, “Transmission of Room Temperature Radiation by Materials at Low Temperatures,” Int. J. Infrared Millimeter Waves 5, 655 (1984).
[Crossref]

J. B. Peterson, P. L. Richards, “A Cryogenic Blackbody for Millimeter Wavelengths,” Int. J. Infrared & Millimeter Waves 5, 1507 (1984).
[Crossref]

G. J. Simonis et al., “Characterization of Near-Millimeter Wave Materials by Means of Non-dispersive Fourier Transform Spectroscopy,” Int. J. Infrared Millimeter Waves 5, 57 (1984).
[Crossref]

1983 (1)

J. R. Birch, “Optical Constants of Some Commercial Microwave Materials Between 90 and 1200 GHz,” IEE Proc. 130, 327 (1983).

1982 (2)

J. C. Mather, “The Cosmic Background Explorer (COBE),” Opt. Eng. 21, 769 (1982).
[Crossref]

G. J. Simonis, “Index to Literature Dealing with the Near-Millimeter Wave Properties of Materials,” Int. J. Infrared Millimeter Waves 4, 439 (1982).
[Crossref]

1981 (3)

M. N. Afsar, K. J. Button, “Millimeter and Submillimeter Wave Measurements of Complex Optical and Dielectric parameters of Materials I,” Int. J. Infrared Millimeter Waves 2, 1029 (1981).
[Crossref]

J. R. Birch, J. D. Dromey, J. Lesurp, “The Optical Constants of some Common Low Loss Polymers Between 4 and 40 cm−1,” Infrared Phys. 21, 225 (1981).
[Crossref]

M. N. Afsar, K. J. Button, “Millimeter and Submillimeter Wave Measurements of Complex Optical and Dielectric Parameters of Materials II,” Int. J. Infrared Millimeter Waves 2, 1029 (1981).
[Crossref]

1973 (1)

1967 (1)

Afsar, M. N.

M. N. Afsar, K. J. Button, “Millimeter and Submillimeter Wave Measurements of Complex Optical and Dielectric parameters of Materials I,” Int. J. Infrared Millimeter Waves 2, 1029 (1981).
[Crossref]

M. N. Afsar, K. J. Button, “Millimeter and Submillimeter Wave Measurements of Complex Optical and Dielectric Parameters of Materials II,” Int. J. Infrared Millimeter Waves 2, 1029 (1981).
[Crossref]

Armstrong, K. R.

Birch, J. R.

J. R. Birch, “Optical Constants of Some Commercial Microwave Materials Between 90 and 1200 GHz,” IEE Proc. 130, 327 (1983).

J. R. Birch, J. D. Dromey, J. Lesurp, “The Optical Constants of some Common Low Loss Polymers Between 4 and 40 cm−1,” Infrared Phys. 21, 225 (1981).
[Crossref]

Button, K. J.

M. N. Afsar, K. J. Button, “Millimeter and Submillimeter Wave Measurements of Complex Optical and Dielectric Parameters of Materials II,” Int. J. Infrared Millimeter Waves 2, 1029 (1981).
[Crossref]

M. N. Afsar, K. J. Button, “Millimeter and Submillimeter Wave Measurements of Complex Optical and Dielectric parameters of Materials I,” Int. J. Infrared Millimeter Waves 2, 1029 (1981).
[Crossref]

Cuming,

Emerson, Cuming, Canton, Mass., “High-Loss Dielectric Microwave Absorbers,“ Technical Bulletin, 2-6 (Revised 1980).

Dromey, J. D.

J. R. Birch, J. D. Dromey, J. Lesurp, “The Optical Constants of some Common Low Loss Polymers Between 4 and 40 cm−1,” Infrared Phys. 21, 225 (1981).
[Crossref]

Emerson,

Emerson, Cuming, Canton, Mass., “High-Loss Dielectric Microwave Absorbers,“ Technical Bulletin, 2-6 (Revised 1980).

Ibruegger, J.

J. Ibruegger, “Transmission of Room Temperature Radiation by Materials at Low Temperatures,” Int. J. Infrared Millimeter Waves 5, 655 (1984).
[Crossref]

Lesurp, J.

J. R. Birch, J. D. Dromey, J. Lesurp, “The Optical Constants of some Common Low Loss Polymers Between 4 and 40 cm−1,” Infrared Phys. 21, 225 (1981).
[Crossref]

Low, F. J.

Mather, J. C.

J. C. Mather, “The Cosmic Background Explorer (COBE),” Opt. Eng. 21, 769 (1982).
[Crossref]

Peterson, J. B.

J. B. Peterson, P. L. Richards, “A Cryogenic Blackbody for Millimeter Wavelengths,” Int. J. Infrared & Millimeter Waves 5, 1507 (1984).
[Crossref]

Peterson, J. P.

J. P. Peterson, P. L. Richards, T. Timusk, “Spectrum of the Cosmic Background at Millimeter Wavelengths,” Phys. Rev. Lett. 55, 332 (1985). This reference corrects the stated sample thicknesses in Ref. 13.
[Crossref] [PubMed]

Rancliffe, R. D.

Randall, C. M.

Richards, P. L.

J. P. Peterson, P. L. Richards, T. Timusk, “Spectrum of the Cosmic Background at Millimeter Wavelengths,” Phys. Rev. Lett. 55, 332 (1985). This reference corrects the stated sample thicknesses in Ref. 13.
[Crossref] [PubMed]

J. B. Peterson, P. L. Richards, “A Cryogenic Blackbody for Millimeter Wavelengths,” Int. J. Infrared & Millimeter Waves 5, 1507 (1984).
[Crossref]

Simonis, G. J.

G. J. Simonis et al., “Characterization of Near-Millimeter Wave Materials by Means of Non-dispersive Fourier Transform Spectroscopy,” Int. J. Infrared Millimeter Waves 5, 57 (1984).
[Crossref]

G. J. Simonis, “Index to Literature Dealing with the Near-Millimeter Wave Properties of Materials,” Int. J. Infrared Millimeter Waves 4, 439 (1982).
[Crossref]

Timusk, T.

J. P. Peterson, P. L. Richards, T. Timusk, “Spectrum of the Cosmic Background at Millimeter Wavelengths,” Phys. Rev. Lett. 55, 332 (1985). This reference corrects the stated sample thicknesses in Ref. 13.
[Crossref] [PubMed]

Welford, W. T.

W. T. Welford, R. Winston, The Optics of Nonimaging Concentrators (Academic, New York, 1978).

Winston, R.

W. T. Welford, R. Winston, The Optics of Nonimaging Concentrators (Academic, New York, 1978).

Appl. Opt. (2)

IEE Proc. (1)

J. R. Birch, “Optical Constants of Some Commercial Microwave Materials Between 90 and 1200 GHz,” IEE Proc. 130, 327 (1983).

Infrared Phys. (1)

J. R. Birch, J. D. Dromey, J. Lesurp, “The Optical Constants of some Common Low Loss Polymers Between 4 and 40 cm−1,” Infrared Phys. 21, 225 (1981).
[Crossref]

Int. J. Infrared & Millimeter Waves (1)

J. B. Peterson, P. L. Richards, “A Cryogenic Blackbody for Millimeter Wavelengths,” Int. J. Infrared & Millimeter Waves 5, 1507 (1984).
[Crossref]

Int. J. Infrared Millimeter Waves (5)

J. Ibruegger, “Transmission of Room Temperature Radiation by Materials at Low Temperatures,” Int. J. Infrared Millimeter Waves 5, 655 (1984).
[Crossref]

M. N. Afsar, K. J. Button, “Millimeter and Submillimeter Wave Measurements of Complex Optical and Dielectric Parameters of Materials II,” Int. J. Infrared Millimeter Waves 2, 1029 (1981).
[Crossref]

M. N. Afsar, K. J. Button, “Millimeter and Submillimeter Wave Measurements of Complex Optical and Dielectric parameters of Materials I,” Int. J. Infrared Millimeter Waves 2, 1029 (1981).
[Crossref]

G. J. Simonis et al., “Characterization of Near-Millimeter Wave Materials by Means of Non-dispersive Fourier Transform Spectroscopy,” Int. J. Infrared Millimeter Waves 5, 57 (1984).
[Crossref]

G. J. Simonis, “Index to Literature Dealing with the Near-Millimeter Wave Properties of Materials,” Int. J. Infrared Millimeter Waves 4, 439 (1982).
[Crossref]

Opt. Eng. (1)

J. C. Mather, “The Cosmic Background Explorer (COBE),” Opt. Eng. 21, 769 (1982).
[Crossref]

Phys. Rev. Lett. (1)

J. P. Peterson, P. L. Richards, T. Timusk, “Spectrum of the Cosmic Background at Millimeter Wavelengths,” Phys. Rev. Lett. 55, 332 (1985). This reference corrects the stated sample thicknesses in Ref. 13.
[Crossref] [PubMed]

Other (2)

Emerson, Cuming, Canton, Mass., “High-Loss Dielectric Microwave Absorbers,“ Technical Bulletin, 2-6 (Revised 1980).

W. T. Welford, R. Winston, The Optics of Nonimaging Concentrators (Academic, New York, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured power transmittance spectra for four Eccosorb samples, 6.35 mm thick.

Fig. 2
Fig. 2

Measured power reflectance for the samples 6.35 mm thick. The refractive index which would produce this reflectances is given on the right-hand scale.

Fig. 3
Fig. 3

Percent power transmittance of CR110 at 1.2 cm−1 as a function of sample thickness, for samples maintained at ambient and liquid nitrogen temperatures.

Fig. 4
Fig. 4

Intensity absorption coefficient for Eccosorb CR samples deduced from the data in Figs. 13.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = ( 1 R 1 ) 2 exp ( exp α t ) | 1 exp ( α t ) exp ( 2 i ϕ ) R 1 | 2 ,

Metrics