Abstract

Diffraction-limited aspherical lenses for audiodisc systems have been produced in a high-precision lens replication process using UV-polymerizable coatings. The requirements and merits of this process are described. The optical performance of the lenses is determined by the accuracy of the replication process and the physical properties of the photopolymerized coating. The optical and mechanical behavior of the replication coating is examined in detail over a broad temperature range.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Braat, “Aspherical Lenses in Optical Scanning Systems,” Soc. Photo-Opt. Instrum. Eng. 399, 294 (1983).
  2. U.S. Precision, The Handbook of Plastic Optics, Cincinnati (1983).
  3. K. Shintani, S. Kubota, “Evaluation of a Diffraction-Limited Plastic Biaspheric Objective Lens,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WB2; T. Kiriki, N. Izumiya, K. Sakurai, T. Kojima, “Plastic Aspheric Lens for the Compact Disc System,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WB3.
  4. Technical data from Matsushita Electrical Industrial Co., “Plastic Lens Extra-Precision Injection Molding Method,” Japanese Industrial & Technological Bulletin11, 7, 14 (1983).
  5. T. Kojima, “Application of Plastic Aspheric Lenses,” J. Opt. Soc. Am. A 1, 1235 (1984).
  6. H. Dislich, “Kunststoffe in der Optik,” Angew. Chem. 91, 52 (1979).
    [CrossRef]
  7. R. E. Parks, “Overview of Optical Manufacturing Methods,” Soc. Photo-Opt. Instrum. Eng. 306, 2 (1981).
  8. H. Howden, J. A. Clarke, “Refracting Replica Aspheric Optics,” Opt. Eng. 15, 197 (1976).
    [CrossRef]
  9. S. D. Fantone, “Replication of Optical Surfaces using UV Curing Cements,” Appl. Opt. 22, 764 (1983).
    [PubMed]
  10. J. J. M. Braat, A. Smid, M. M. B. Wijnakker, “Design and Production of Replicated Aspheric Objective Lenses for Optical Disk Systems,” Appl. Opt. 24, 1853 (1985).
    [CrossRef] [PubMed]
  11. A. J. Bean, R. W. Bassemir, “UV Curing of Printing Inks,” in UV Curing Science and Technology, P. Pappas, Ed. (Technology Marketing Corporation, Norwalk, Connecticut, 1978), p. 187.
  12. G. W. Gruber, “UV Curing of Coatings,” in UV Curing Science and Technology, P. Pappas, Ed. (Technology Marketing Corporation, Norwalk, Connecticut, 1978).
  13. H. C. Haverkorn van Rijsewijk, P. E. J. Legierse, G. E. Thomas, “Manufacture of Laservision Discs by a Photopolymerization Process,” Philips Tech. Rev. 40, 287 (1982).
  14. J. G. Kloosterboer, G. J. M. Lippits, “Photopolymerizable Coatings for Laservision Video Discs,” J. Rad. Curing 11, 10 (1984).
  15. C. G. Roffey, Photopolymerization of Surface Coatings (Wiley, New York, 1982).
  16. L. R. Catechair, D. Wostratzky, “Photoinitiators: An Overview of Mechanism and Applications,” J. Rad. Curing 10, 4 (1983).
  17. R. J. M. Zwiers, G. C. M. Dortant, “Replication of High Precision Aspherical Lenses using UV Curable Coatings,” in Integration of Fundamental Polymer Science and Technology, to be published (Elsevier, Amsterdam, 1985).
  18. T. G. Gijsbers, “Colath, a Numerically Controlled Lathe for Very High Precision,” Philips Tech. Rev. 39, 229 (1980).
  19. D. Visser, T. G. Gijsbers, R. A. M. Jorna, “Molds and Measurements for Replicated Aspheric Lenses for Optical Recording,” Appl. Opt. 24, 1848 (1985).
    [CrossRef] [PubMed]
  20. J. G. Dil, W. Mesman, J. C. Driessen, “High Precision Measurement of Aspheric Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 235, 85 (1980).
  21. B. E. Read, G. D. Dean, The Determination of Dynamic Properties of Polymers and Composites (Wiley, New York, 1978).

1985 (2)

1984 (2)

T. Kojima, “Application of Plastic Aspheric Lenses,” J. Opt. Soc. Am. A 1, 1235 (1984).

J. G. Kloosterboer, G. J. M. Lippits, “Photopolymerizable Coatings for Laservision Video Discs,” J. Rad. Curing 11, 10 (1984).

1983 (3)

L. R. Catechair, D. Wostratzky, “Photoinitiators: An Overview of Mechanism and Applications,” J. Rad. Curing 10, 4 (1983).

J. Braat, “Aspherical Lenses in Optical Scanning Systems,” Soc. Photo-Opt. Instrum. Eng. 399, 294 (1983).

S. D. Fantone, “Replication of Optical Surfaces using UV Curing Cements,” Appl. Opt. 22, 764 (1983).
[PubMed]

1982 (1)

H. C. Haverkorn van Rijsewijk, P. E. J. Legierse, G. E. Thomas, “Manufacture of Laservision Discs by a Photopolymerization Process,” Philips Tech. Rev. 40, 287 (1982).

1981 (1)

R. E. Parks, “Overview of Optical Manufacturing Methods,” Soc. Photo-Opt. Instrum. Eng. 306, 2 (1981).

1980 (2)

T. G. Gijsbers, “Colath, a Numerically Controlled Lathe for Very High Precision,” Philips Tech. Rev. 39, 229 (1980).

J. G. Dil, W. Mesman, J. C. Driessen, “High Precision Measurement of Aspheric Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 235, 85 (1980).

1979 (1)

H. Dislich, “Kunststoffe in der Optik,” Angew. Chem. 91, 52 (1979).
[CrossRef]

1976 (1)

H. Howden, J. A. Clarke, “Refracting Replica Aspheric Optics,” Opt. Eng. 15, 197 (1976).
[CrossRef]

Bassemir, R. W.

A. J. Bean, R. W. Bassemir, “UV Curing of Printing Inks,” in UV Curing Science and Technology, P. Pappas, Ed. (Technology Marketing Corporation, Norwalk, Connecticut, 1978), p. 187.

Bean, A. J.

A. J. Bean, R. W. Bassemir, “UV Curing of Printing Inks,” in UV Curing Science and Technology, P. Pappas, Ed. (Technology Marketing Corporation, Norwalk, Connecticut, 1978), p. 187.

Braat, J.

J. Braat, “Aspherical Lenses in Optical Scanning Systems,” Soc. Photo-Opt. Instrum. Eng. 399, 294 (1983).

Braat, J. J. M.

Catechair, L. R.

L. R. Catechair, D. Wostratzky, “Photoinitiators: An Overview of Mechanism and Applications,” J. Rad. Curing 10, 4 (1983).

Clarke, J. A.

H. Howden, J. A. Clarke, “Refracting Replica Aspheric Optics,” Opt. Eng. 15, 197 (1976).
[CrossRef]

Dean, G. D.

B. E. Read, G. D. Dean, The Determination of Dynamic Properties of Polymers and Composites (Wiley, New York, 1978).

Dil, J. G.

J. G. Dil, W. Mesman, J. C. Driessen, “High Precision Measurement of Aspheric Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 235, 85 (1980).

Dislich, H.

H. Dislich, “Kunststoffe in der Optik,” Angew. Chem. 91, 52 (1979).
[CrossRef]

Dortant, G. C. M.

R. J. M. Zwiers, G. C. M. Dortant, “Replication of High Precision Aspherical Lenses using UV Curable Coatings,” in Integration of Fundamental Polymer Science and Technology, to be published (Elsevier, Amsterdam, 1985).

Driessen, J. C.

J. G. Dil, W. Mesman, J. C. Driessen, “High Precision Measurement of Aspheric Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 235, 85 (1980).

Fantone, S. D.

Gijsbers, T. G.

D. Visser, T. G. Gijsbers, R. A. M. Jorna, “Molds and Measurements for Replicated Aspheric Lenses for Optical Recording,” Appl. Opt. 24, 1848 (1985).
[CrossRef] [PubMed]

T. G. Gijsbers, “Colath, a Numerically Controlled Lathe for Very High Precision,” Philips Tech. Rev. 39, 229 (1980).

Gruber, G. W.

G. W. Gruber, “UV Curing of Coatings,” in UV Curing Science and Technology, P. Pappas, Ed. (Technology Marketing Corporation, Norwalk, Connecticut, 1978).

Haverkorn van Rijsewijk, H. C.

H. C. Haverkorn van Rijsewijk, P. E. J. Legierse, G. E. Thomas, “Manufacture of Laservision Discs by a Photopolymerization Process,” Philips Tech. Rev. 40, 287 (1982).

Howden, H.

H. Howden, J. A. Clarke, “Refracting Replica Aspheric Optics,” Opt. Eng. 15, 197 (1976).
[CrossRef]

Jorna, R. A. M.

Kloosterboer, J. G.

J. G. Kloosterboer, G. J. M. Lippits, “Photopolymerizable Coatings for Laservision Video Discs,” J. Rad. Curing 11, 10 (1984).

Kojima, T.

T. Kojima, “Application of Plastic Aspheric Lenses,” J. Opt. Soc. Am. A 1, 1235 (1984).

Kubota, S.

K. Shintani, S. Kubota, “Evaluation of a Diffraction-Limited Plastic Biaspheric Objective Lens,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WB2; T. Kiriki, N. Izumiya, K. Sakurai, T. Kojima, “Plastic Aspheric Lens for the Compact Disc System,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WB3.

Legierse, P. E. J.

H. C. Haverkorn van Rijsewijk, P. E. J. Legierse, G. E. Thomas, “Manufacture of Laservision Discs by a Photopolymerization Process,” Philips Tech. Rev. 40, 287 (1982).

Lippits, G. J. M.

J. G. Kloosterboer, G. J. M. Lippits, “Photopolymerizable Coatings for Laservision Video Discs,” J. Rad. Curing 11, 10 (1984).

Mesman, W.

J. G. Dil, W. Mesman, J. C. Driessen, “High Precision Measurement of Aspheric Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 235, 85 (1980).

Parks, R. E.

R. E. Parks, “Overview of Optical Manufacturing Methods,” Soc. Photo-Opt. Instrum. Eng. 306, 2 (1981).

Precision, U.S.

U.S. Precision, The Handbook of Plastic Optics, Cincinnati (1983).

Read, B. E.

B. E. Read, G. D. Dean, The Determination of Dynamic Properties of Polymers and Composites (Wiley, New York, 1978).

Roffey, C. G.

C. G. Roffey, Photopolymerization of Surface Coatings (Wiley, New York, 1982).

Shintani, K.

K. Shintani, S. Kubota, “Evaluation of a Diffraction-Limited Plastic Biaspheric Objective Lens,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WB2; T. Kiriki, N. Izumiya, K. Sakurai, T. Kojima, “Plastic Aspheric Lens for the Compact Disc System,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WB3.

Smid, A.

Thomas, G. E.

H. C. Haverkorn van Rijsewijk, P. E. J. Legierse, G. E. Thomas, “Manufacture of Laservision Discs by a Photopolymerization Process,” Philips Tech. Rev. 40, 287 (1982).

Visser, D.

Wijnakker, M. M. B.

Wostratzky, D.

L. R. Catechair, D. Wostratzky, “Photoinitiators: An Overview of Mechanism and Applications,” J. Rad. Curing 10, 4 (1983).

Zwiers, R. J. M.

R. J. M. Zwiers, G. C. M. Dortant, “Replication of High Precision Aspherical Lenses using UV Curable Coatings,” in Integration of Fundamental Polymer Science and Technology, to be published (Elsevier, Amsterdam, 1985).

Angew. Chem. (1)

H. Dislich, “Kunststoffe in der Optik,” Angew. Chem. 91, 52 (1979).
[CrossRef]

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

T. Kojima, “Application of Plastic Aspheric Lenses,” J. Opt. Soc. Am. A 1, 1235 (1984).

J. Rad. Curing (2)

J. G. Kloosterboer, G. J. M. Lippits, “Photopolymerizable Coatings for Laservision Video Discs,” J. Rad. Curing 11, 10 (1984).

L. R. Catechair, D. Wostratzky, “Photoinitiators: An Overview of Mechanism and Applications,” J. Rad. Curing 10, 4 (1983).

Opt. Eng. (1)

H. Howden, J. A. Clarke, “Refracting Replica Aspheric Optics,” Opt. Eng. 15, 197 (1976).
[CrossRef]

Philips Tech. Rev. (2)

T. G. Gijsbers, “Colath, a Numerically Controlled Lathe for Very High Precision,” Philips Tech. Rev. 39, 229 (1980).

H. C. Haverkorn van Rijsewijk, P. E. J. Legierse, G. E. Thomas, “Manufacture of Laservision Discs by a Photopolymerization Process,” Philips Tech. Rev. 40, 287 (1982).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. G. Dil, W. Mesman, J. C. Driessen, “High Precision Measurement of Aspheric Surfaces,” Proc. Soc. Photo-Opt. Instrum. Eng. 235, 85 (1980).

Soc. Photo-Opt. Instrum. Eng. (2)

R. E. Parks, “Overview of Optical Manufacturing Methods,” Soc. Photo-Opt. Instrum. Eng. 306, 2 (1981).

J. Braat, “Aspherical Lenses in Optical Scanning Systems,” Soc. Photo-Opt. Instrum. Eng. 399, 294 (1983).

Other (8)

U.S. Precision, The Handbook of Plastic Optics, Cincinnati (1983).

K. Shintani, S. Kubota, “Evaluation of a Diffraction-Limited Plastic Biaspheric Objective Lens,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WB2; T. Kiriki, N. Izumiya, K. Sakurai, T. Kojima, “Plastic Aspheric Lens for the Compact Disc System,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WB3.

Technical data from Matsushita Electrical Industrial Co., “Plastic Lens Extra-Precision Injection Molding Method,” Japanese Industrial & Technological Bulletin11, 7, 14 (1983).

A. J. Bean, R. W. Bassemir, “UV Curing of Printing Inks,” in UV Curing Science and Technology, P. Pappas, Ed. (Technology Marketing Corporation, Norwalk, Connecticut, 1978), p. 187.

G. W. Gruber, “UV Curing of Coatings,” in UV Curing Science and Technology, P. Pappas, Ed. (Technology Marketing Corporation, Norwalk, Connecticut, 1978).

B. E. Read, G. D. Dean, The Determination of Dynamic Properties of Polymers and Composites (Wiley, New York, 1978).

R. J. M. Zwiers, G. C. M. Dortant, “Replication of High Precision Aspherical Lenses using UV Curable Coatings,” in Integration of Fundamental Polymer Science and Technology, to be published (Elsevier, Amsterdam, 1985).

C. G. Roffey, Photopolymerization of Surface Coatings (Wiley, New York, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Relative spectral power distribution of part of the emission spectrum of the Philips HPA 400 W, UV light source, and absorption spectrum of the photoinitiators BDMK and HCPK, solid and dashed line, respectively, in methanol (0.002 M).

Fig. 2
Fig. 2

Schematic drawing of the lens replication process.

Fig. 3
Fig. 3

Schematic drawing of the measurement of the polymerization shrinkage and plot of the polymerization shrinkage irradiation time: (a) starting position; (b) situation after applying spacers and coating; (c) situation after photopolymerization; (d) the polymerization shrinkage for a coating with n = 1.6. ●, immediately after shutter closes; ○, 10 min after shutter closes. Conditions: UV source, Philips fluorescent lamp TL-109; light intensity = 2.2 mW/cm2; nitrogen atmosphere.

Fig. 4
Fig. 4

Differential contour plot of an aspherical lens surface obtained with several irradiation times: a = 10 sec; b = 30 sec; c = 120 sec. Conditions: UV lamp, HPA 400 W; LI = ~8 mW/cm2; nitrogen atmosphere.

Fig. 5
Fig. 5

Temperature behavior of the refractive index of a replication coating (15-min irradiation): ○, 1° temperature scan; ●, 2° temperature scan; □, subsequent annealing, 1° temperature scan; ■, subsequent annealing, 2° temperature scan.

Fig. 6
Fig. 6

Change of transmission with wavelength for replication coatings of different thickness: a = 25 μm; b = 520 μm; c = 1000 μm.

Fig. 7
Fig. 7

Dependence of E′ modulus on temperature at 0.033 Hz for coatings obtained under different polymerization conditions: a, photopolymerized at 25°C; b, photopolymerized at 75°C; c, photopolymerized at 25° C and annealed; d, reference PMMA spectrum. Conditions: TL-09, I = 2.4 mW/cm2; nitrogen atmosphere; irradiation time = 5 min.

Fig. 8
Fig. 8

Dependence of tanδ on temperature at 0.033 Hz for coatings obtained under different polymerization conditions. Conditions: same as Fig. 7.

Fig. 9
Fig. 9

Effect of irradiation time on coating hardness: □, immediately after photopolymerization; ■, after seven days. Conditions: TL-09, I = 2.4 mW/cm2: nitrogen atmosphere.

Metrics