Abstract

A new holographic lateral shear interferometer with two three-beam holograms is described which is useful for the real-time measurement of large liquid surface deformations. In the interferometer, it is shown theoretically and experimentally that the aberrations of the optical system can be cancelled and the amount of shear changed easily. The shearing interferograms of the liquid surface deformations caused by a water strider, etc. are demonstrated.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Cagnet, M. Francon, J. C. Thrier, “Interference Contrast Applied to the Observation of Liquid Surfaces,” in Atlas of Optical Phenomena, M. Francon, Ed. (Springer-Verlag, Berlin, 1962), p. 44.
  2. K. D. Hinsch, “Holographic Interferometry of Surface Deformation of Transparent Fluids,” Appl. Opt. 17, 3101 (1978).
    [CrossRef] [PubMed]
  3. L. Liu, “Quasi-interferometry with Coded Correlation Filtering,” Appl. Opt. 21, 2817 (1982).
    [CrossRef] [PubMed]
  4. J. C. Wyant, “Double Frequency Grating Lateral Shear Interferometer,” Appl. Opt. 10, 1342 (1971).
  5. K. Matsuda, T. Kohno, M. Ohtake, “Real Time Measurement of Meniscuses on the Water Surface Caused by a Pond Skater Using a Holographic Shearing Interferometer,” Jpn. J. Opt. (Kogaku) 9, 102 (1980).
  6. K. Matsuda, “Layer Lateral Shear Interferometer Using Twin Three-Beam Holograms,” Appl. Opt, 19, 2643 (1980).
    [CrossRef] [PubMed]
  7. A. Papoulis, “Convolution; Singularities; Systems,” in Systems and Transforms with Applications in Optics, A. Papoulis, Ed. (McGraw-Hill, New York, 1968), p. 30.
  8. R. L. Lambert, C. N. Kurtz, “Reversal Bleaching for Low Flare Light in Holograms,” Appl. Opt. 10, 1342 (1971).
    [CrossRef]

1982

1980

K. Matsuda, T. Kohno, M. Ohtake, “Real Time Measurement of Meniscuses on the Water Surface Caused by a Pond Skater Using a Holographic Shearing Interferometer,” Jpn. J. Opt. (Kogaku) 9, 102 (1980).

K. Matsuda, “Layer Lateral Shear Interferometer Using Twin Three-Beam Holograms,” Appl. Opt, 19, 2643 (1980).
[CrossRef] [PubMed]

1978

1971

Cagnet, M.

M. Cagnet, M. Francon, J. C. Thrier, “Interference Contrast Applied to the Observation of Liquid Surfaces,” in Atlas of Optical Phenomena, M. Francon, Ed. (Springer-Verlag, Berlin, 1962), p. 44.

Francon, M.

M. Cagnet, M. Francon, J. C. Thrier, “Interference Contrast Applied to the Observation of Liquid Surfaces,” in Atlas of Optical Phenomena, M. Francon, Ed. (Springer-Verlag, Berlin, 1962), p. 44.

Hinsch, K. D.

Kohno, T.

K. Matsuda, T. Kohno, M. Ohtake, “Real Time Measurement of Meniscuses on the Water Surface Caused by a Pond Skater Using a Holographic Shearing Interferometer,” Jpn. J. Opt. (Kogaku) 9, 102 (1980).

Kurtz, C. N.

Lambert, R. L.

Liu, L.

Matsuda, K.

K. Matsuda, “Layer Lateral Shear Interferometer Using Twin Three-Beam Holograms,” Appl. Opt, 19, 2643 (1980).
[CrossRef] [PubMed]

K. Matsuda, T. Kohno, M. Ohtake, “Real Time Measurement of Meniscuses on the Water Surface Caused by a Pond Skater Using a Holographic Shearing Interferometer,” Jpn. J. Opt. (Kogaku) 9, 102 (1980).

Ohtake, M.

K. Matsuda, T. Kohno, M. Ohtake, “Real Time Measurement of Meniscuses on the Water Surface Caused by a Pond Skater Using a Holographic Shearing Interferometer,” Jpn. J. Opt. (Kogaku) 9, 102 (1980).

Papoulis, A.

A. Papoulis, “Convolution; Singularities; Systems,” in Systems and Transforms with Applications in Optics, A. Papoulis, Ed. (McGraw-Hill, New York, 1968), p. 30.

Thrier, J. C.

M. Cagnet, M. Francon, J. C. Thrier, “Interference Contrast Applied to the Observation of Liquid Surfaces,” in Atlas of Optical Phenomena, M. Francon, Ed. (Springer-Verlag, Berlin, 1962), p. 44.

Wyant, J. C.

Appl. Opt

K. Matsuda, “Layer Lateral Shear Interferometer Using Twin Three-Beam Holograms,” Appl. Opt, 19, 2643 (1980).
[CrossRef] [PubMed]

Appl. Opt.

Jpn. J. Opt. (Kogaku)

K. Matsuda, T. Kohno, M. Ohtake, “Real Time Measurement of Meniscuses on the Water Surface Caused by a Pond Skater Using a Holographic Shearing Interferometer,” Jpn. J. Opt. (Kogaku) 9, 102 (1980).

Other

M. Cagnet, M. Francon, J. C. Thrier, “Interference Contrast Applied to the Observation of Liquid Surfaces,” in Atlas of Optical Phenomena, M. Francon, Ed. (Springer-Verlag, Berlin, 1962), p. 44.

A. Papoulis, “Convolution; Singularities; Systems,” in Systems and Transforms with Applications in Optics, A. Papoulis, Ed. (McGraw-Hill, New York, 1968), p. 30.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Optical system for measurement of water surface deformation by a single-hologram (double-grating) lateral shear interferometer.

Fig. 2
Fig. 2

Shearing interferogram of a water surface obtained with the single hologram interferometer to demonstrate the aberrations.

Fig. 3
Fig. 3

Side view of the optical system of a shearing interferometer with a pair of three-beam holograms.

Fig. 4
Fig. 4

Basic configuration of the optical system shown in Fig. 3.

Fig. 5
Fig. 5

Basic configuration of the optical system shown in Fig. 3: (a) imaging by the optical system; (b) calculation of the amount of shear.

Fig. 6
Fig. 6

Sheared wave fronts W1 and W2 of the test surface on the screen.

Fig. 7
Fig. 7

Shearing interferograms produced when a needle was put into water: (a) ΔS = 0.8 mm; (b) ΔS = 2.1 mm.

Fig. 8
Fig. 8

Contour map obtained from the shearing interferogram of Fig. 7(a).

Fig. 9
Fig. 9

Shearing interferogram with a water strider floating on the water surface (ΔS = 1.6 mm).

Fig. 10
Fig. 10

Contour map of the water surface deformation obtained from the photograph of Fig. 9.

Fig. 11
Fig. 11

Shearing interferograms (ΔS = 1.6 mm) produced by putting an iron plate into water; (a) pure water, (b) with a drop of Driwel (surface active agent) in the water.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ζ ( x ) ζ ( x Δ S ) = λ Δ m ( x : Δ S ) ,
ζ ( Δ S ) = λ Δ m ( Δ S : Δ S ) .
ζ ( 2 Δ S ) = λ Δ m ( 2 Δ S : Δ S ) + ζ ( Δ S ) .
W L ( x ) = ζ ( x ) / ( n n 0 ) .

Metrics