Abstract

Refractive indices of deposited thin films of amorphous GeO2:SiO2 mixtures were determined by multimode optical waveguide measurement techniques at four different wavelengths and used to characterize waveguide properties as a function of material composition. The results indicate that the refractive index varies linearly with the mole fraction of GeO2 in the guide, while wavelength dispersion increases with heavier GeO2 dopant concentrations. This is consistent with previously reported findings for bulk samples and suggests that linear variation of the film’s compositional content is a viable method for obtaining refractive indices and dispersive properties needed to interface with other optical devices in integrated optics-type applications.

© 1985 Optical Society of America

Full Article  |  PDF Article

Corrections

Agnes S. Huang, Yehuda Arie, Clyde C. Neil, and Jacob M. Hammer, "Study of refractive index of GeO2:SiO2 mixtures using deposited-thin-film optical waveguides: erratum," Appl. Opt. 25, 1879-1879 (1986)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-25-12-1879

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Yin, B. K. Garside, “Low Loss GeO2 Optical Waveguide Fabrication Using Low Deposition Rate rf Sputtering,” Appl. Opt. 21, 4324 (1982).
    [CrossRef] [PubMed]
  2. G. G. Devyatykh et al., “Material Dispersion and Rayleigh Scattering in Glassy Germanium Dioxide, a Substance with Promising Applications in Low-Loss Optical Fiber waveguides,” Sov. J. Quantum Electron. 10, 900 (1980).
    [CrossRef]
  3. S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, “Refractive-Index Dispersion of Doped Fused Silica,” in Technical Digest, First International Conference on Integrated Optics and Optical Fiber Communication (IECE, Tokyo, 1977).
  4. J. W. Fleming, “Material and Mode Dispersion in GeO2–B2O3–SiO2 Glasses,” J. A. Ceram. Soc. 59, 503 (1976).
    [CrossRef]
  5. E. M. Dianov, “Prospects for the Use of the 1–1.6-μ Wavelength Range in Fiber Optic Communications (Review),” Sov. J. Quantum Electron. 10, 259 (1980).
    [CrossRef]
  6. M. J. Adams, D. N. Payne, F. M. E. S. Aden, A. H. Hartog, “Wavelength-Dispersive Properties of Glasses for Optical Fibres: the Germania Enigma,” Electron. Lett. 14, 703 (1978).
    [CrossRef]
  7. P. K. Tien, R. Ulrich, R. J. Martin, “Modes of Propagating Lightwaves in Thin Deposited Semiconductor Films,” Appl. Phys. Lett. 14, 291 (1969).
    [CrossRef]
  8. F. Zernike, “Fabrication And Measurement Of Passive Components,” Integrated Optics, T. Tamir, Ed. (Springer-Verlag, Berlin, 1979).
  9. H. Kogelnik, “Theory Of Dielectric Waveguides,” in Integrated Optics, T. Tamir, Ed. (Springer-Verlag, Berlin, 1979).
  10. J. M. Hammer, “An Optical Waveguide Method of Measuring Refractive Index and Thicknesses Of Thin Films,” unpublished.
  11. J. W. Fleming, “Dispersion in GeO2–SiO2 Glasses,” Appl. Opt. 24, 4486 (1984).
    [CrossRef]
  12. I. H. Malitson, “Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55, 1205 (1965).
    [CrossRef]

1984 (1)

J. W. Fleming, “Dispersion in GeO2–SiO2 Glasses,” Appl. Opt. 24, 4486 (1984).
[CrossRef]

1982 (1)

1980 (2)

G. G. Devyatykh et al., “Material Dispersion and Rayleigh Scattering in Glassy Germanium Dioxide, a Substance with Promising Applications in Low-Loss Optical Fiber waveguides,” Sov. J. Quantum Electron. 10, 900 (1980).
[CrossRef]

E. M. Dianov, “Prospects for the Use of the 1–1.6-μ Wavelength Range in Fiber Optic Communications (Review),” Sov. J. Quantum Electron. 10, 259 (1980).
[CrossRef]

1978 (1)

M. J. Adams, D. N. Payne, F. M. E. S. Aden, A. H. Hartog, “Wavelength-Dispersive Properties of Glasses for Optical Fibres: the Germania Enigma,” Electron. Lett. 14, 703 (1978).
[CrossRef]

1976 (1)

J. W. Fleming, “Material and Mode Dispersion in GeO2–B2O3–SiO2 Glasses,” J. A. Ceram. Soc. 59, 503 (1976).
[CrossRef]

1969 (1)

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of Propagating Lightwaves in Thin Deposited Semiconductor Films,” Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

1965 (1)

Adams, M. J.

M. J. Adams, D. N. Payne, F. M. E. S. Aden, A. H. Hartog, “Wavelength-Dispersive Properties of Glasses for Optical Fibres: the Germania Enigma,” Electron. Lett. 14, 703 (1978).
[CrossRef]

Aden, F. M. E. S.

M. J. Adams, D. N. Payne, F. M. E. S. Aden, A. H. Hartog, “Wavelength-Dispersive Properties of Glasses for Optical Fibres: the Germania Enigma,” Electron. Lett. 14, 703 (1978).
[CrossRef]

Devyatykh, G. G.

G. G. Devyatykh et al., “Material Dispersion and Rayleigh Scattering in Glassy Germanium Dioxide, a Substance with Promising Applications in Low-Loss Optical Fiber waveguides,” Sov. J. Quantum Electron. 10, 900 (1980).
[CrossRef]

Dianov, E. M.

E. M. Dianov, “Prospects for the Use of the 1–1.6-μ Wavelength Range in Fiber Optic Communications (Review),” Sov. J. Quantum Electron. 10, 259 (1980).
[CrossRef]

Fleming, J. W.

J. W. Fleming, “Dispersion in GeO2–SiO2 Glasses,” Appl. Opt. 24, 4486 (1984).
[CrossRef]

J. W. Fleming, “Material and Mode Dispersion in GeO2–B2O3–SiO2 Glasses,” J. A. Ceram. Soc. 59, 503 (1976).
[CrossRef]

Garside, B. K.

Hammer, J. M.

J. M. Hammer, “An Optical Waveguide Method of Measuring Refractive Index and Thicknesses Of Thin Films,” unpublished.

Hartog, A. H.

M. J. Adams, D. N. Payne, F. M. E. S. Aden, A. H. Hartog, “Wavelength-Dispersive Properties of Glasses for Optical Fibres: the Germania Enigma,” Electron. Lett. 14, 703 (1978).
[CrossRef]

Izawa, T.

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, “Refractive-Index Dispersion of Doped Fused Silica,” in Technical Digest, First International Conference on Integrated Optics and Optical Fiber Communication (IECE, Tokyo, 1977).

Kobayashi, S.

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, “Refractive-Index Dispersion of Doped Fused Silica,” in Technical Digest, First International Conference on Integrated Optics and Optical Fiber Communication (IECE, Tokyo, 1977).

Kogelnik, H.

H. Kogelnik, “Theory Of Dielectric Waveguides,” in Integrated Optics, T. Tamir, Ed. (Springer-Verlag, Berlin, 1979).

Malitson, I. H.

Martin, R. J.

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of Propagating Lightwaves in Thin Deposited Semiconductor Films,” Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Payne, D. N.

M. J. Adams, D. N. Payne, F. M. E. S. Aden, A. H. Hartog, “Wavelength-Dispersive Properties of Glasses for Optical Fibres: the Germania Enigma,” Electron. Lett. 14, 703 (1978).
[CrossRef]

Shibata, N.

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, “Refractive-Index Dispersion of Doped Fused Silica,” in Technical Digest, First International Conference on Integrated Optics and Optical Fiber Communication (IECE, Tokyo, 1977).

Shibata, S.

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, “Refractive-Index Dispersion of Doped Fused Silica,” in Technical Digest, First International Conference on Integrated Optics and Optical Fiber Communication (IECE, Tokyo, 1977).

Tien, P. K.

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of Propagating Lightwaves in Thin Deposited Semiconductor Films,” Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Ulrich, R.

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of Propagating Lightwaves in Thin Deposited Semiconductor Films,” Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Yin, S. Y.

Zernike, F.

F. Zernike, “Fabrication And Measurement Of Passive Components,” Integrated Optics, T. Tamir, Ed. (Springer-Verlag, Berlin, 1979).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. K. Tien, R. Ulrich, R. J. Martin, “Modes of Propagating Lightwaves in Thin Deposited Semiconductor Films,” Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Electron. Lett. (1)

M. J. Adams, D. N. Payne, F. M. E. S. Aden, A. H. Hartog, “Wavelength-Dispersive Properties of Glasses for Optical Fibres: the Germania Enigma,” Electron. Lett. 14, 703 (1978).
[CrossRef]

J. A. Ceram. Soc. (1)

J. W. Fleming, “Material and Mode Dispersion in GeO2–B2O3–SiO2 Glasses,” J. A. Ceram. Soc. 59, 503 (1976).
[CrossRef]

J. Opt. Soc. Am. (1)

Sov. J. Quantum Electron. (2)

E. M. Dianov, “Prospects for the Use of the 1–1.6-μ Wavelength Range in Fiber Optic Communications (Review),” Sov. J. Quantum Electron. 10, 259 (1980).
[CrossRef]

G. G. Devyatykh et al., “Material Dispersion and Rayleigh Scattering in Glassy Germanium Dioxide, a Substance with Promising Applications in Low-Loss Optical Fiber waveguides,” Sov. J. Quantum Electron. 10, 900 (1980).
[CrossRef]

Other (4)

S. Kobayashi, S. Shibata, N. Shibata, T. Izawa, “Refractive-Index Dispersion of Doped Fused Silica,” in Technical Digest, First International Conference on Integrated Optics and Optical Fiber Communication (IECE, Tokyo, 1977).

F. Zernike, “Fabrication And Measurement Of Passive Components,” Integrated Optics, T. Tamir, Ed. (Springer-Verlag, Berlin, 1979).

H. Kogelnik, “Theory Of Dielectric Waveguides,” in Integrated Optics, T. Tamir, Ed. (Springer-Verlag, Berlin, 1979).

J. M. Hammer, “An Optical Waveguide Method of Measuring Refractive Index and Thicknesses Of Thin Films,” unpublished.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Plot of film index nf vs film thickness h for TE0, TE1, and TE2 modes of GeO2 film on SiO2 substrate at λ = 8036 Å. The effective indices ne of the modes are determined from the prism coupling angles Φ and related to nf and h by the dispersion relation. Each mode curve corresponds to a unique ne which is calculated from the coupling angle. For the TE0 mode, the values are Φ = 12°, ne = 1.5829; the TE1 mode has Φ = 7.8°, ne = 1.5529; and the TE2 mode has Φ = 1.6°, ne = 1.504. The film index and thickness are determined from the intersection of these curves.

Fig. 2
Fig. 2

Film refractive index vs mole fraction of GeO2 in the guide at λ = 8510 Å. This plot shows the theoretical linear fit to the experimental data compared to the linear relation obtained by assuming a linear variation of refractive index with mole fraction from Eq. (3). The results indicate few disparities between the lines. Similar plots at λ = 5145 and 6328 Å are consistent with this figure.

Fig. 3
Fig. 3

Wavelength dispersion of GeO2–SiO2 films according to GeO2 concentration. The dispersions are delimited by the pure GeO2 and pure SiO2 dispersion curves.

Tables (2)

Tables Icon

Table I Summary of Experimental Results at λ = 8510 Å

Tables Icon

Table II Equations for Fitting Results of nf vs Mole Fraction GeO2 Determination at Three Wavelengths

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n e = n p sin ( Φ p + sin 1 sin ϕ n p ) .
2 π h λ 0 = ( n f 2 n e 2 ) 1 / 2 m π + tan 1 n e 2 n s 2 n f 2 n e 2 + tan 1 n e 2 n c 2 n f 2 n e 2 .
n f = x n GeO 2 + ( 1 x ) n SiO 2 ,

Metrics