Abstract

Results are reported of reflectivity and complex refractive-index measurements performed on a number of samples of oxide glasses (SiO2 and GeO2 with different dopings) to be used as cladding materials in hollow-core fibers for medium IR and in particular CO2 laser radiation transmission. GeO2 glasses are more convenient for guidance of CO2 radiation at λ = 10.6 μm, while comparable results can be obtained with SiO2 glasses with 27.8% doping for λ ~ 9.2 μm.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Hidaka, T. Morikawa, J. Shimada, “Hollow Core Oxide Glass Cladding Optical Fiber for Middle Infrared Region,” J. Appl. Phys. 52, 4467 (1981).
    [CrossRef]
  2. T. Hidaka, K. Kumada, J. Shimada, T. Morikawa, “GeO2–ZnO–K2O Glass as the Cladding Material of 940 cm−1 CO2 Laser Light Transmitting Hollow-core Waveguide,” J. Appl. Phys. 53, 5484 (1982).
    [CrossRef]
  3. R. Falciai, G. Gironi, A. M. Scheggi, “Oxide Glass Hollow Fiber for CO2 Laser Radiation Transmission,” Proc. Soc. Photo-Opt. Instrum. Eng. 494, 84 (1984).
  4. T. Hidaka, “Loss Calculation of Hollow-Core-Oxide Glass Cladding Middle Infrared Optical Waveguide,” J. Appl. Phys. 53, 93 (1982).
    [CrossRef]

1984 (1)

R. Falciai, G. Gironi, A. M. Scheggi, “Oxide Glass Hollow Fiber for CO2 Laser Radiation Transmission,” Proc. Soc. Photo-Opt. Instrum. Eng. 494, 84 (1984).

1982 (2)

T. Hidaka, “Loss Calculation of Hollow-Core-Oxide Glass Cladding Middle Infrared Optical Waveguide,” J. Appl. Phys. 53, 93 (1982).
[CrossRef]

T. Hidaka, K. Kumada, J. Shimada, T. Morikawa, “GeO2–ZnO–K2O Glass as the Cladding Material of 940 cm−1 CO2 Laser Light Transmitting Hollow-core Waveguide,” J. Appl. Phys. 53, 5484 (1982).
[CrossRef]

1981 (1)

T. Hidaka, T. Morikawa, J. Shimada, “Hollow Core Oxide Glass Cladding Optical Fiber for Middle Infrared Region,” J. Appl. Phys. 52, 4467 (1981).
[CrossRef]

Falciai, R.

R. Falciai, G. Gironi, A. M. Scheggi, “Oxide Glass Hollow Fiber for CO2 Laser Radiation Transmission,” Proc. Soc. Photo-Opt. Instrum. Eng. 494, 84 (1984).

Gironi, G.

R. Falciai, G. Gironi, A. M. Scheggi, “Oxide Glass Hollow Fiber for CO2 Laser Radiation Transmission,” Proc. Soc. Photo-Opt. Instrum. Eng. 494, 84 (1984).

Hidaka, T.

T. Hidaka, “Loss Calculation of Hollow-Core-Oxide Glass Cladding Middle Infrared Optical Waveguide,” J. Appl. Phys. 53, 93 (1982).
[CrossRef]

T. Hidaka, K. Kumada, J. Shimada, T. Morikawa, “GeO2–ZnO–K2O Glass as the Cladding Material of 940 cm−1 CO2 Laser Light Transmitting Hollow-core Waveguide,” J. Appl. Phys. 53, 5484 (1982).
[CrossRef]

T. Hidaka, T. Morikawa, J. Shimada, “Hollow Core Oxide Glass Cladding Optical Fiber for Middle Infrared Region,” J. Appl. Phys. 52, 4467 (1981).
[CrossRef]

Kumada, K.

T. Hidaka, K. Kumada, J. Shimada, T. Morikawa, “GeO2–ZnO–K2O Glass as the Cladding Material of 940 cm−1 CO2 Laser Light Transmitting Hollow-core Waveguide,” J. Appl. Phys. 53, 5484 (1982).
[CrossRef]

Morikawa, T.

T. Hidaka, K. Kumada, J. Shimada, T. Morikawa, “GeO2–ZnO–K2O Glass as the Cladding Material of 940 cm−1 CO2 Laser Light Transmitting Hollow-core Waveguide,” J. Appl. Phys. 53, 5484 (1982).
[CrossRef]

T. Hidaka, T. Morikawa, J. Shimada, “Hollow Core Oxide Glass Cladding Optical Fiber for Middle Infrared Region,” J. Appl. Phys. 52, 4467 (1981).
[CrossRef]

Scheggi, A. M.

R. Falciai, G. Gironi, A. M. Scheggi, “Oxide Glass Hollow Fiber for CO2 Laser Radiation Transmission,” Proc. Soc. Photo-Opt. Instrum. Eng. 494, 84 (1984).

Shimada, J.

T. Hidaka, K. Kumada, J. Shimada, T. Morikawa, “GeO2–ZnO–K2O Glass as the Cladding Material of 940 cm−1 CO2 Laser Light Transmitting Hollow-core Waveguide,” J. Appl. Phys. 53, 5484 (1982).
[CrossRef]

T. Hidaka, T. Morikawa, J. Shimada, “Hollow Core Oxide Glass Cladding Optical Fiber for Middle Infrared Region,” J. Appl. Phys. 52, 4467 (1981).
[CrossRef]

J. Appl. Phys. (3)

T. Hidaka, T. Morikawa, J. Shimada, “Hollow Core Oxide Glass Cladding Optical Fiber for Middle Infrared Region,” J. Appl. Phys. 52, 4467 (1981).
[CrossRef]

T. Hidaka, K. Kumada, J. Shimada, T. Morikawa, “GeO2–ZnO–K2O Glass as the Cladding Material of 940 cm−1 CO2 Laser Light Transmitting Hollow-core Waveguide,” J. Appl. Phys. 53, 5484 (1982).
[CrossRef]

T. Hidaka, “Loss Calculation of Hollow-Core-Oxide Glass Cladding Middle Infrared Optical Waveguide,” J. Appl. Phys. 53, 93 (1982).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. Falciai, G. Gironi, A. M. Scheggi, “Oxide Glass Hollow Fiber for CO2 Laser Radiation Transmission,” Proc. Soc. Photo-Opt. Instrum. Eng. 494, 84 (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Real part of the refractive index n r and extinction coefficient K around an absorption peak at frequency ω0.

Fig. 2
Fig. 2

Reflectivity R, real part of refractive index n r , and extinction Coefficient K for a 27.8% PbO–SiO2 glass as a function of wave number.

Fig. 3
Fig. 3

Relfectivity R, real n r , and imaginary K parts of the refractive index as a function of wave number for GeO2 sample.

Fig. 4
Fig. 4

Reflectivity R, real n r , and imaginary K parts of the refractive index as a function of wave number for a GeO2–ZnO–K2O sample (respectively, 80, 10, and 10 mol %).

Fig. 5
Fig. 5

Results for different samples. Continuous lines represent zones where n r <1; dots are wave numbers of n r minima.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n r ( ω ) = 1 + c π 0 α ( ω 1 ) ω i 2 ω 2 d ω i ,
n r = ( 1 R ) / ( 1 + R 2 R cos ϕ ) , k = 2 R sin ( ϕ ) / ( 1 + R 2 R cos ϕ ) ,
ϕ ( ω ) = ω π 0 ln R ( ω i ) ω 2 ω i 2 d ω i .

Metrics