Abstract

Modal birefringence of highly birefringent fibers can be measured nondestructively by the elastooptic modulation method. Based on this modulation method, a new method for precisely measuring the wavelength dependence of modal birefringence in highly birefringent fibers is presented using an incoherent light source such as a fiber Raman laser.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamamoto, T. Kimura, “Coherent Optical Fiber Transmission Systems,” IEEE J. Quantum Electron. QE-17, 919 (1981).
    [CrossRef]
  2. R. Ulrich, M. Johnson, “Fiber-Ring Interferometer: Polarization Analysis,” Opt. Lett. 4, 152 (1979).
    [CrossRef] [PubMed]
  3. T. Katsuyama, H. Matsumoto, T. Suganuma, “Low-Loss Singlet Polarisation Fibers,” Electron, Lett. 17, 473 (1981).
    [CrossRef]
  4. Y. Sasaki, T. Hosaka, T. Takada, J. Noda, “8 km-Long Polarisation-Maintaining Fibre with Highly Stable Polarisation State,” Electron, Lett. 19, 792 (1983).
    [CrossRef]
  5. S. C. Rashleigh, J. Marrone, I. P. Kaminow, “Power Spectrum of Birefringence Perturbations in the Single-Mode and Near-Multimode Regime,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1983), paper p. 32.
  6. S. C. Rashleigh, “Wavelength Dependence of Birefringence in Highly Birefringent Fibers,” Opt. Lett. 7, 294 (1982).
    [CrossRef] [PubMed]
  7. J. Noda, T. Hosaka, Y. Sasaki, R. Ulrich, “Dispersion of Verdet Constant in Stress-Birefringent Silica Fibre,” Electron. Lett. 20, 906 (1984).
    [CrossRef]
  8. N. Shibata, K. Okamoto, K. Suzuki, Y. Ishida, “Polarization-Mode Properties of Elliptical-Core Fibers and Stress-Induced Birefringent Fibers,” J. Opt. Soc. Am. 73, 1792 (1983).
    [CrossRef]
  9. S. C. Rashleigh, “Measurement of Fiber Birefringence by Wavelength Scanning: Effect of Dispersion,” Opt. Lett. 8, 336 (1983).
    [CrossRef] [PubMed]
  10. N. Chinone, R. Ulrich, “Elasto-optic Polarization Measurement in Optical Fiber,” Opt. Lett. 6, 16 (1981).
    [CrossRef] [PubMed]
  11. Y. Sasaki, Y. Ohmori, “Phase-Matched Sum-Frequency Light Generation in Optical Fibers,” Appl. Phys. Lett, 39, 466 (1981).
    [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), pp. 491–506.
  13. Y. Namihira, M. Kudo, Y. Mushiake, “Effect of Mechanical Stress on the Transmission Characteristics of Optical Fiber,” Trans. IECE Jpn. 60-C, 391 (1977).
  14. K. Okamoto, T. Hosaka, T. Edahiro, “Stress Analysis of Optical Fibers by a Finite Element Method,” IEEE J. Quantum Electron. QE-17, 2123 (1981).
    [CrossRef]

1984 (1)

J. Noda, T. Hosaka, Y. Sasaki, R. Ulrich, “Dispersion of Verdet Constant in Stress-Birefringent Silica Fibre,” Electron. Lett. 20, 906 (1984).
[CrossRef]

1983 (3)

1982 (1)

1981 (5)

N. Chinone, R. Ulrich, “Elasto-optic Polarization Measurement in Optical Fiber,” Opt. Lett. 6, 16 (1981).
[CrossRef] [PubMed]

K. Okamoto, T. Hosaka, T. Edahiro, “Stress Analysis of Optical Fibers by a Finite Element Method,” IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

Y. Sasaki, Y. Ohmori, “Phase-Matched Sum-Frequency Light Generation in Optical Fibers,” Appl. Phys. Lett, 39, 466 (1981).
[CrossRef]

Y. Yamamoto, T. Kimura, “Coherent Optical Fiber Transmission Systems,” IEEE J. Quantum Electron. QE-17, 919 (1981).
[CrossRef]

T. Katsuyama, H. Matsumoto, T. Suganuma, “Low-Loss Singlet Polarisation Fibers,” Electron, Lett. 17, 473 (1981).
[CrossRef]

1979 (1)

1977 (1)

Y. Namihira, M. Kudo, Y. Mushiake, “Effect of Mechanical Stress on the Transmission Characteristics of Optical Fiber,” Trans. IECE Jpn. 60-C, 391 (1977).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), pp. 491–506.

Chinone, N.

Edahiro, T.

K. Okamoto, T. Hosaka, T. Edahiro, “Stress Analysis of Optical Fibers by a Finite Element Method,” IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

Hosaka, T.

J. Noda, T. Hosaka, Y. Sasaki, R. Ulrich, “Dispersion of Verdet Constant in Stress-Birefringent Silica Fibre,” Electron. Lett. 20, 906 (1984).
[CrossRef]

Y. Sasaki, T. Hosaka, T. Takada, J. Noda, “8 km-Long Polarisation-Maintaining Fibre with Highly Stable Polarisation State,” Electron, Lett. 19, 792 (1983).
[CrossRef]

K. Okamoto, T. Hosaka, T. Edahiro, “Stress Analysis of Optical Fibers by a Finite Element Method,” IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

Ishida, Y.

Johnson, M.

Kaminow, I. P.

S. C. Rashleigh, J. Marrone, I. P. Kaminow, “Power Spectrum of Birefringence Perturbations in the Single-Mode and Near-Multimode Regime,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1983), paper p. 32.

Katsuyama, T.

T. Katsuyama, H. Matsumoto, T. Suganuma, “Low-Loss Singlet Polarisation Fibers,” Electron, Lett. 17, 473 (1981).
[CrossRef]

Kimura, T.

Y. Yamamoto, T. Kimura, “Coherent Optical Fiber Transmission Systems,” IEEE J. Quantum Electron. QE-17, 919 (1981).
[CrossRef]

Kudo, M.

Y. Namihira, M. Kudo, Y. Mushiake, “Effect of Mechanical Stress on the Transmission Characteristics of Optical Fiber,” Trans. IECE Jpn. 60-C, 391 (1977).

Marrone, J.

S. C. Rashleigh, J. Marrone, I. P. Kaminow, “Power Spectrum of Birefringence Perturbations in the Single-Mode and Near-Multimode Regime,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1983), paper p. 32.

Matsumoto, H.

T. Katsuyama, H. Matsumoto, T. Suganuma, “Low-Loss Singlet Polarisation Fibers,” Electron, Lett. 17, 473 (1981).
[CrossRef]

Mushiake, Y.

Y. Namihira, M. Kudo, Y. Mushiake, “Effect of Mechanical Stress on the Transmission Characteristics of Optical Fiber,” Trans. IECE Jpn. 60-C, 391 (1977).

Namihira, Y.

Y. Namihira, M. Kudo, Y. Mushiake, “Effect of Mechanical Stress on the Transmission Characteristics of Optical Fiber,” Trans. IECE Jpn. 60-C, 391 (1977).

Noda, J.

J. Noda, T. Hosaka, Y. Sasaki, R. Ulrich, “Dispersion of Verdet Constant in Stress-Birefringent Silica Fibre,” Electron. Lett. 20, 906 (1984).
[CrossRef]

Y. Sasaki, T. Hosaka, T. Takada, J. Noda, “8 km-Long Polarisation-Maintaining Fibre with Highly Stable Polarisation State,” Electron, Lett. 19, 792 (1983).
[CrossRef]

Ohmori, Y.

Y. Sasaki, Y. Ohmori, “Phase-Matched Sum-Frequency Light Generation in Optical Fibers,” Appl. Phys. Lett, 39, 466 (1981).
[CrossRef]

Okamoto, K.

N. Shibata, K. Okamoto, K. Suzuki, Y. Ishida, “Polarization-Mode Properties of Elliptical-Core Fibers and Stress-Induced Birefringent Fibers,” J. Opt. Soc. Am. 73, 1792 (1983).
[CrossRef]

K. Okamoto, T. Hosaka, T. Edahiro, “Stress Analysis of Optical Fibers by a Finite Element Method,” IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

Rashleigh, S. C.

S. C. Rashleigh, “Measurement of Fiber Birefringence by Wavelength Scanning: Effect of Dispersion,” Opt. Lett. 8, 336 (1983).
[CrossRef] [PubMed]

S. C. Rashleigh, “Wavelength Dependence of Birefringence in Highly Birefringent Fibers,” Opt. Lett. 7, 294 (1982).
[CrossRef] [PubMed]

S. C. Rashleigh, J. Marrone, I. P. Kaminow, “Power Spectrum of Birefringence Perturbations in the Single-Mode and Near-Multimode Regime,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1983), paper p. 32.

Sasaki, Y.

J. Noda, T. Hosaka, Y. Sasaki, R. Ulrich, “Dispersion of Verdet Constant in Stress-Birefringent Silica Fibre,” Electron. Lett. 20, 906 (1984).
[CrossRef]

Y. Sasaki, T. Hosaka, T. Takada, J. Noda, “8 km-Long Polarisation-Maintaining Fibre with Highly Stable Polarisation State,” Electron, Lett. 19, 792 (1983).
[CrossRef]

Y. Sasaki, Y. Ohmori, “Phase-Matched Sum-Frequency Light Generation in Optical Fibers,” Appl. Phys. Lett, 39, 466 (1981).
[CrossRef]

Shibata, N.

Suganuma, T.

T. Katsuyama, H. Matsumoto, T. Suganuma, “Low-Loss Singlet Polarisation Fibers,” Electron, Lett. 17, 473 (1981).
[CrossRef]

Suzuki, K.

Takada, T.

Y. Sasaki, T. Hosaka, T. Takada, J. Noda, “8 km-Long Polarisation-Maintaining Fibre with Highly Stable Polarisation State,” Electron, Lett. 19, 792 (1983).
[CrossRef]

Ulrich, R.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), pp. 491–506.

Yamamoto, Y.

Y. Yamamoto, T. Kimura, “Coherent Optical Fiber Transmission Systems,” IEEE J. Quantum Electron. QE-17, 919 (1981).
[CrossRef]

Appl. Phys. Lett (1)

Y. Sasaki, Y. Ohmori, “Phase-Matched Sum-Frequency Light Generation in Optical Fibers,” Appl. Phys. Lett, 39, 466 (1981).
[CrossRef]

Electron, Lett. (2)

T. Katsuyama, H. Matsumoto, T. Suganuma, “Low-Loss Singlet Polarisation Fibers,” Electron, Lett. 17, 473 (1981).
[CrossRef]

Y. Sasaki, T. Hosaka, T. Takada, J. Noda, “8 km-Long Polarisation-Maintaining Fibre with Highly Stable Polarisation State,” Electron, Lett. 19, 792 (1983).
[CrossRef]

Electron. Lett. (1)

J. Noda, T. Hosaka, Y. Sasaki, R. Ulrich, “Dispersion of Verdet Constant in Stress-Birefringent Silica Fibre,” Electron. Lett. 20, 906 (1984).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. Yamamoto, T. Kimura, “Coherent Optical Fiber Transmission Systems,” IEEE J. Quantum Electron. QE-17, 919 (1981).
[CrossRef]

K. Okamoto, T. Hosaka, T. Edahiro, “Stress Analysis of Optical Fibers by a Finite Element Method,” IEEE J. Quantum Electron. QE-17, 2123 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (4)

Trans. IECE Jpn. (1)

Y. Namihira, M. Kudo, Y. Mushiake, “Effect of Mechanical Stress on the Transmission Characteristics of Optical Fiber,” Trans. IECE Jpn. 60-C, 391 (1977).

Other (2)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), pp. 491–506.

S. C. Rashleigh, J. Marrone, I. P. Kaminow, “Power Spectrum of Birefringence Perturbations in the Single-Mode and Near-Multimode Regime,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1983), paper p. 32.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the principle for modal birefringence measurement.

Fig. 2
Fig. 2

Experimental setup for measuring modal birefringence.

Fig. 3
Fig. 3

Recorder output for a bare PANDA fiber.

Fig. 4
Fig. 4

Cross-polarization coupling amplitude of a bare PANDA fiber vs azimuth angle ϕ.

Fig. 5
Fig. 5

Recorder output for a nylon-coated PANDA fiber.

Fig. 6
Fig. 6

Cross-polarization coupling amplitude of a nylon-coated PANDA fiber vs azimuth angle ϕ.

Fig. 7
Fig. 7

Experimental setup with a fiber Raman laser for measuring wavelength dependence of modal birefringence.

Fig. 8
Fig. 8

Schematic diagram of propagation of the main and coupled waves in a birefringent fiber spliced with the principal axes crossed.

Fig. 9
Fig. 9

Recorder output for a bare PANDA fiber with the cutoff wavelength of λ a = 1.28 μm.

Fig. 10
Fig. 10

Wavelength dependence of modal birefringence for bare PANDA fibers (a) and (b).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E x = A exp ( j β x L ) ,
E y = j K A exp { j [ β x Z + β y ( L Z ) ] } ,
P = | E x cos ( α A ) + E y sin ( α A ) | 2 = | A | 2 { cos 2 ( α A ) + K sin ( 2 α A ) sin [ Δ β ( L Z ) ] } ,
P 0 ( Z ) = P 1 K 0 sin ( 2 α A ) sin [ Δ β ( L Z ) ] .
P 0 ( Y ) = P 1 K 0 sin ( 2 α A ) sin ( Δ β Y ) R ( c D Y ) ,
K 0 = 1.58 π n 3 F 0 · ( P 11 P 12 ) ( 1 + ν ) 2 a E λ · sin ( 2 ϕ ) .

Metrics