Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Chen, “Modulators for Optical Communications,” Proc. IEEE 58, 1440 (1970).
    [CrossRef]
  2. G. C. Bjorklund, “Frequency-Modulation Spectroscopy: a New Method for Measuring Weak Absorptions and Dispersions,” Opt. Lett. 5, 15 (1980).
    [CrossRef] [PubMed]
  3. J. L. Hall, T. Baer, L. Hollberg, H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V, A. R. W. McKellar, T. Oka, B. P. Stoicheff, Ed. (Springer-Verlag, New York, 1981), p. 15.
  4. K. Maischberger, et al. R. W. P. Drever et al., “High Precision Laser Interferometry for Detection of Gravitational Radiation,” In Laser Spectroscopy V, A. R. W. McKellar et al., Eds. (Springer-Verlag, New York, 1981), p. 25 and p. 33.
  5. G. M. Carter, “Tunable High-Efficiency Microwave Frequency Shifting of Infrared Lasers,” Appl. Phys. Lett. 32, 810 (1978).
    [CrossRef]
  6. N. H. Tran, R. Kachru, T. F. Gallagher, J. P. Watjen, G. C. Bjorklund, “Generation of Microwaves by Mixing Two Optical Frequencies in a Nonlinear Crystal: a Novel Approach to High-Bandwidth Optical Mixers,” Opt. Lett. 9, 128 (1984).
    [CrossRef] [PubMed]
  7. For a comprehensive overview and collection of reprints, see I. P. Kaminow, An Introduction to Electroptic Devices (Academic, New York, 1974).
  8. G. Magerl, E. Bonek, “Broadband Electronically Tunable Resonant Microwave Modulators for CO2 Lasers,” Appl. Phys. Lett. 34, 452 (1979).
    [CrossRef]
  9. G. Magerl, E. Bonek, “A 2.75 GHz Tunable CO2-Laser Infrared Source,” J. Appl. Phys. 47, 4901 (1976).
    [CrossRef]
  10. I. P. Kaminow, J. Liu, “Propagation Characteristics of Partially Loaded Two-Conductor Transmission Line for Broadband Light Modulators,” Proc. IEEE 51, 132 (1963).
    [CrossRef]
  11. W. W. Rigrod, I. P. Kaminow, “Wide-band Microwave Light Modulation,” Proc. IEEE 51, 137 (1963).
    [CrossRef]
  12. R. A. Myers, P. S. Pershan, “Light Modulation Experiments at 16 GHz,” J. Appl. Phys. 36, 22 (1965).
    [CrossRef]
  13. P. S. Cross, R. A. Baumgartner, B. H. Kolner, “Microwave Integrated Optical Modulator,” Appl. Phys. Lett. 44, 486 (1984).
    [CrossRef]
  14. S. Ramo, J. R. Whinnery, Fields and Waves in Modern Radio (Wiley, New York, 1953).
  15. P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic Coefficients and Elastic-Wave Propagation in Single-Domain Ferroelectric Lithium Tantalate,” Appl. Phys. Lett. 8, 81 (1966).
    [CrossRef]
  16. W. L. Bond, “Measurement of the Refractive Indices of Several Crystals,” J. Appl. Phys. 36, 1674 (1965).
    [CrossRef]
  17. T. F. Gallagher, N. H. Tran, J. P. Watjen, “Principles of a Resonant Cavity Optical Modulator,” (unpublished).

1984 (2)

1980 (1)

1979 (1)

G. Magerl, E. Bonek, “Broadband Electronically Tunable Resonant Microwave Modulators for CO2 Lasers,” Appl. Phys. Lett. 34, 452 (1979).
[CrossRef]

1978 (1)

G. M. Carter, “Tunable High-Efficiency Microwave Frequency Shifting of Infrared Lasers,” Appl. Phys. Lett. 32, 810 (1978).
[CrossRef]

1976 (1)

G. Magerl, E. Bonek, “A 2.75 GHz Tunable CO2-Laser Infrared Source,” J. Appl. Phys. 47, 4901 (1976).
[CrossRef]

1970 (1)

F. S. Chen, “Modulators for Optical Communications,” Proc. IEEE 58, 1440 (1970).
[CrossRef]

1966 (1)

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic Coefficients and Elastic-Wave Propagation in Single-Domain Ferroelectric Lithium Tantalate,” Appl. Phys. Lett. 8, 81 (1966).
[CrossRef]

1965 (2)

W. L. Bond, “Measurement of the Refractive Indices of Several Crystals,” J. Appl. Phys. 36, 1674 (1965).
[CrossRef]

R. A. Myers, P. S. Pershan, “Light Modulation Experiments at 16 GHz,” J. Appl. Phys. 36, 22 (1965).
[CrossRef]

1963 (2)

I. P. Kaminow, J. Liu, “Propagation Characteristics of Partially Loaded Two-Conductor Transmission Line for Broadband Light Modulators,” Proc. IEEE 51, 132 (1963).
[CrossRef]

W. W. Rigrod, I. P. Kaminow, “Wide-band Microwave Light Modulation,” Proc. IEEE 51, 137 (1963).
[CrossRef]

Baer, T.

J. L. Hall, T. Baer, L. Hollberg, H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V, A. R. W. McKellar, T. Oka, B. P. Stoicheff, Ed. (Springer-Verlag, New York, 1981), p. 15.

Ballman, A. A.

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic Coefficients and Elastic-Wave Propagation in Single-Domain Ferroelectric Lithium Tantalate,” Appl. Phys. Lett. 8, 81 (1966).
[CrossRef]

Baumgartner, R. A.

P. S. Cross, R. A. Baumgartner, B. H. Kolner, “Microwave Integrated Optical Modulator,” Appl. Phys. Lett. 44, 486 (1984).
[CrossRef]

Bjorklund, G. C.

Bond, W. L.

W. L. Bond, “Measurement of the Refractive Indices of Several Crystals,” J. Appl. Phys. 36, 1674 (1965).
[CrossRef]

Bonek, E.

G. Magerl, E. Bonek, “Broadband Electronically Tunable Resonant Microwave Modulators for CO2 Lasers,” Appl. Phys. Lett. 34, 452 (1979).
[CrossRef]

G. Magerl, E. Bonek, “A 2.75 GHz Tunable CO2-Laser Infrared Source,” J. Appl. Phys. 47, 4901 (1976).
[CrossRef]

Carter, G. M.

G. M. Carter, “Tunable High-Efficiency Microwave Frequency Shifting of Infrared Lasers,” Appl. Phys. Lett. 32, 810 (1978).
[CrossRef]

Chen, F. S.

F. S. Chen, “Modulators for Optical Communications,” Proc. IEEE 58, 1440 (1970).
[CrossRef]

Cross, P. S.

P. S. Cross, R. A. Baumgartner, B. H. Kolner, “Microwave Integrated Optical Modulator,” Appl. Phys. Lett. 44, 486 (1984).
[CrossRef]

Drever, R. W. P.

K. Maischberger, et al. R. W. P. Drever et al., “High Precision Laser Interferometry for Detection of Gravitational Radiation,” In Laser Spectroscopy V, A. R. W. McKellar et al., Eds. (Springer-Verlag, New York, 1981), p. 25 and p. 33.

Gallagher, T. F.

Hall, J. L.

J. L. Hall, T. Baer, L. Hollberg, H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V, A. R. W. McKellar, T. Oka, B. P. Stoicheff, Ed. (Springer-Verlag, New York, 1981), p. 15.

Hollberg, L.

J. L. Hall, T. Baer, L. Hollberg, H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V, A. R. W. McKellar, T. Oka, B. P. Stoicheff, Ed. (Springer-Verlag, New York, 1981), p. 15.

Kachru, R.

Kaminow, I. P.

I. P. Kaminow, J. Liu, “Propagation Characteristics of Partially Loaded Two-Conductor Transmission Line for Broadband Light Modulators,” Proc. IEEE 51, 132 (1963).
[CrossRef]

W. W. Rigrod, I. P. Kaminow, “Wide-band Microwave Light Modulation,” Proc. IEEE 51, 137 (1963).
[CrossRef]

For a comprehensive overview and collection of reprints, see I. P. Kaminow, An Introduction to Electroptic Devices (Academic, New York, 1974).

Kolner, B. H.

P. S. Cross, R. A. Baumgartner, B. H. Kolner, “Microwave Integrated Optical Modulator,” Appl. Phys. Lett. 44, 486 (1984).
[CrossRef]

Lenzo, P. V.

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic Coefficients and Elastic-Wave Propagation in Single-Domain Ferroelectric Lithium Tantalate,” Appl. Phys. Lett. 8, 81 (1966).
[CrossRef]

Liu, J.

I. P. Kaminow, J. Liu, “Propagation Characteristics of Partially Loaded Two-Conductor Transmission Line for Broadband Light Modulators,” Proc. IEEE 51, 132 (1963).
[CrossRef]

Magerl, G.

G. Magerl, E. Bonek, “Broadband Electronically Tunable Resonant Microwave Modulators for CO2 Lasers,” Appl. Phys. Lett. 34, 452 (1979).
[CrossRef]

G. Magerl, E. Bonek, “A 2.75 GHz Tunable CO2-Laser Infrared Source,” J. Appl. Phys. 47, 4901 (1976).
[CrossRef]

Maischberger, K.

K. Maischberger, et al. R. W. P. Drever et al., “High Precision Laser Interferometry for Detection of Gravitational Radiation,” In Laser Spectroscopy V, A. R. W. McKellar et al., Eds. (Springer-Verlag, New York, 1981), p. 25 and p. 33.

Myers, R. A.

R. A. Myers, P. S. Pershan, “Light Modulation Experiments at 16 GHz,” J. Appl. Phys. 36, 22 (1965).
[CrossRef]

Pershan, P. S.

R. A. Myers, P. S. Pershan, “Light Modulation Experiments at 16 GHz,” J. Appl. Phys. 36, 22 (1965).
[CrossRef]

Ramo, S.

S. Ramo, J. R. Whinnery, Fields and Waves in Modern Radio (Wiley, New York, 1953).

Rigrod, W. W.

W. W. Rigrod, I. P. Kaminow, “Wide-band Microwave Light Modulation,” Proc. IEEE 51, 137 (1963).
[CrossRef]

Robinson, H. G.

J. L. Hall, T. Baer, L. Hollberg, H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V, A. R. W. McKellar, T. Oka, B. P. Stoicheff, Ed. (Springer-Verlag, New York, 1981), p. 15.

Spencer, E. G.

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic Coefficients and Elastic-Wave Propagation in Single-Domain Ferroelectric Lithium Tantalate,” Appl. Phys. Lett. 8, 81 (1966).
[CrossRef]

Tran, N. H.

Turner, E. H.

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic Coefficients and Elastic-Wave Propagation in Single-Domain Ferroelectric Lithium Tantalate,” Appl. Phys. Lett. 8, 81 (1966).
[CrossRef]

Watjen, J. P.

Whinnery, J. R.

S. Ramo, J. R. Whinnery, Fields and Waves in Modern Radio (Wiley, New York, 1953).

Appl. Phys. Lett. (4)

G. Magerl, E. Bonek, “Broadband Electronically Tunable Resonant Microwave Modulators for CO2 Lasers,” Appl. Phys. Lett. 34, 452 (1979).
[CrossRef]

P. S. Cross, R. A. Baumgartner, B. H. Kolner, “Microwave Integrated Optical Modulator,” Appl. Phys. Lett. 44, 486 (1984).
[CrossRef]

P. V. Lenzo, E. H. Turner, E. G. Spencer, A. A. Ballman, “Electrooptic Coefficients and Elastic-Wave Propagation in Single-Domain Ferroelectric Lithium Tantalate,” Appl. Phys. Lett. 8, 81 (1966).
[CrossRef]

G. M. Carter, “Tunable High-Efficiency Microwave Frequency Shifting of Infrared Lasers,” Appl. Phys. Lett. 32, 810 (1978).
[CrossRef]

J. Appl. Phys. (3)

W. L. Bond, “Measurement of the Refractive Indices of Several Crystals,” J. Appl. Phys. 36, 1674 (1965).
[CrossRef]

R. A. Myers, P. S. Pershan, “Light Modulation Experiments at 16 GHz,” J. Appl. Phys. 36, 22 (1965).
[CrossRef]

G. Magerl, E. Bonek, “A 2.75 GHz Tunable CO2-Laser Infrared Source,” J. Appl. Phys. 47, 4901 (1976).
[CrossRef]

Opt. Lett. (2)

Proc. IEEE (3)

F. S. Chen, “Modulators for Optical Communications,” Proc. IEEE 58, 1440 (1970).
[CrossRef]

I. P. Kaminow, J. Liu, “Propagation Characteristics of Partially Loaded Two-Conductor Transmission Line for Broadband Light Modulators,” Proc. IEEE 51, 132 (1963).
[CrossRef]

W. W. Rigrod, I. P. Kaminow, “Wide-band Microwave Light Modulation,” Proc. IEEE 51, 137 (1963).
[CrossRef]

Other (5)

For a comprehensive overview and collection of reprints, see I. P. Kaminow, An Introduction to Electroptic Devices (Academic, New York, 1974).

S. Ramo, J. R. Whinnery, Fields and Waves in Modern Radio (Wiley, New York, 1953).

T. F. Gallagher, N. H. Tran, J. P. Watjen, “Principles of a Resonant Cavity Optical Modulator,” (unpublished).

J. L. Hall, T. Baer, L. Hollberg, H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V, A. R. W. McKellar, T. Oka, B. P. Stoicheff, Ed. (Springer-Verlag, New York, 1981), p. 15.

K. Maischberger, et al. R. W. P. Drever et al., “High Precision Laser Interferometry for Detection of Gravitational Radiation,” In Laser Spectroscopy V, A. R. W. McKellar et al., Eds. (Springer-Verlag, New York, 1981), p. 25 and p. 33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the modulator showing direction of optical wave propagation and microwave coupling line.

Fig. 2
Fig. 2

Modulated frequency spectra of the laser for three different microwave powers. The carrier, first, second, third, and fourth sidebands are labeled 0, 1, 2, 3, and 4, respectively.

Fig. 3
Fig. 3

Plot of modulation index squared (δ2) vs microwave power Pm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ν c o = c 2 b ,
υ p = c [ 1 ( ν c o / ν m ) 2 ] ,
ν m ν c o = 1 1 n e 2 = 1.06 .
l = 2 tan 1 ( k a / k p ) / k p odd modes , 2 cot 1 ( k a / k p ) / k p even modes ,
P i = J i 2 ( δ ) ,
δ = l n e 3 r 33 λ ( Q P m π ν m Kabl ) 1 / 2 sin χ 2 χ 2 .
χ = 2 π υ m l ( n e c 1 υ p )

Metrics