Abstract

Laser-induced fluorescence studies have been made of the CH radical in atmospheric pressure flames of methane, oxygen, and nitrogen. Individual rotational levels within the υ′ = 0 and 1 vibrational levels of the A2Δ and B2Σ states are excited by a dye laser operating in the 380–440-nm region. Studies were made of collisional energy transfer pathways within and between the states, using rotationally resolved fluorescence scans. Rotational transfer occurred at a rate, dependent on rotational level, 2–5 times that of quenching. Vibrational transfer was slow but transfer between A(υ′ = 1) and B(υ′ = 0) took place at rates ~0.2 that of quenching.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Crosley, G. P. Smith, “Laser-Induced Fluorescence Spectroscopy for Combustion Diagnostics,” Opt. Eng. 22, 545 (1983).
    [CrossRef]
  2. R. H. Barnes, C. E. Moeller, J. F. Kircher, C. M. Verber, “Dye-Laser Excited CH Flame Fluorescence,” Appl. Opt. 12, 2531 (1973).
    [CrossRef] [PubMed]
  3. K. Fujiwara, N. Omenetto, J. B. Bradshaw, J. N. Bower, S. Nikdel, J. D. Winefordner, “Laser-Induced Molecular Background Fluorescence in Flames,” Spectrochim. Acta Part B 34, 317 (1979).
    [CrossRef]
  4. R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low-Pressure Flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363 (1984).
    [CrossRef]
  5. P. A. Bonczyk, J. A. Shirley, “Measurement of CH and CN Concentration in Flames by Laser-Induced Saturated Fluorescence,” Combust. Flame 34, 253 (1979).
    [CrossRef]
  6. J. F. Verdieck, P. A. Boncyzk, “Laser-Induced Saturated Fluorescence Investigations of CH, CN and NO in Flames,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1559.
    [CrossRef]
  7. Y. Takubo, H. Yano, M. Matsuoka, M. Shimazu, “Saturation Behavior of Laser-Induced CH Fluorescence in a Propane–Air Flame,” J. Quant. Spectrosc. Radiat. Transfer 30, 163 (1983).
    [CrossRef]
  8. K. Kohse-Hoinghaus, W. Perc, T. Just, “Laser-Induced Saturated Fluorescence as a Method for the Determination of Radical Concentrations in Flames,” Ber. Bunsenges. Phys. Chem. 87, 1052 (1983).
    [CrossRef]
  9. K. Kohse-Hoinghaus, R. Heidenreich, T. Just, “Determination of Absolute OH and CH concentrations in a Low Pressure Flame by Laser-Induced Saturated Fluorescence,” in Proceedings, Twentieth Symposium (International) on Combustion, (Combustion Institute, Pittsburgh, 1985), p. 1177.
    [CrossRef]
  10. M. J. Dyer, D. R. Crosley, “Fluorescence Imaging for Flame Chemistry,” in Proceedings, International Conference on Lasers ’84K. M. Corcoran, D. M. Sullivan, W. C. Stwalley, Eds. (STS Press, McLean, Va., 1985), p. 211.
  11. D. R. Crosley, “Collisional Effects on Laser-Induced Fluorescence Flame Measurements,” Opt. Eng. 20, 511 (1981).
    [CrossRef]
  12. A. J. Kotlar, A. Gelb, D. R. Crosley, “A Multi-Level Model of Response to Laser Fluorescence Excitation in OH,” Am. Chem. Soc. Symp. Ser. 134, 137 (1980).
  13. D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27 (1982).
    [CrossRef]
  14. In the older literature on CH, the Λ doublets are referred to as c [overall parity +(−)N] and d[−(−)N]. Modern notation [see J. M. Brown et al., “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500 (1975)] uses e [overall parity +(−)J−1/2 for a doublet state] and f [−(−)J−1/2]. The correspondence is then e ↔ c, f ↔ d for an F1 level [J = N + 1/2] and e ↔ d, f ↔ c for F2[J = N − 1/2].
    [CrossRef]
  15. G. H. Dieke, N. M. Crosswhite, “The Ultraviolet Bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
    [CrossRef]
  16. B. M. Krupp, “A New Analysis of the A2Δ − X 2π system of CH,” Astrophys. J. 189, 389 (1974).
    [CrossRef]
  17. I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules (Elsevier, New York, 1969).
  18. G. P. Smith, D. R. Crosley, “Quantitative Laser-Induced Fluorescence in OH: Transition Probabilities and the Influence of Energy Transfer,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1511.
    [CrossRef]
  19. R. A. Copeland, D. R. Crosley, “Rotational Dependence of Electronic Quenching of OH (A 2Σ + V1 = O),” Chem. Phys. Lett. 107, 295 (1984); R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2 Σ+OH and OD,” J. Chem. Phys. 82, 4022 (1985).
    [CrossRef]
  20. G. L. Switzer et al. “Simultaneous CARS and Luminosity Measurements in a Bluff-Body Combustor,” Prog. Astronaut. Aeronaut, 92, 82 (1984).
  21. J. M. Corliss, Battelle Columbus Laboratories; private communication (1984).
  22. M. Schmidt, H. A. Gillis, M. Clerc, “Variation in the Intensity Distribution of the CH and CD (A2Δ − X 2π) Band Rotational Lines during Fluorescence,” J. Phys. Chem. 79, 2531 (1975).
    [CrossRef]
  23. C. I. M. Beenakker, P. J. F. Verbeek, G. R. Mohlmann, F. J. DeHeer, “The Intensity Distribution in the CH (A 2Δ − X 2π) Spectrum Produced by Electron Impact on Acetylene,” J. Quant. Spectrosc. Radiat. Transfer 15, 333 (1975).
    [CrossRef]
  24. E. M. Bulewicz, P. J. Padley, R. E. Smith, “Spectroscopic Studies of C2, CH and OH Radicals in Low Pressure Acetylene + Oxygen Flames,” Proc. R. Soc. London Ser. A 315, 129 (1970).
    [CrossRef]
  25. N. L. Garland, D. R. Crosley, “Relative Transition Probability Measurements in the A-X and B-X Systems of CH,” J. Quant. Spectrosc. Radiat. Transfer 33, 591 (1985).
    [CrossRef]
  26. G. P. Smith, D. R. Crosley, “Vibrational Energy Transfer in A2Σ+ OH in Flames,” Appl. Opt. 22, 1428 (1983).
    [CrossRef] [PubMed]
  27. M. J. Cottereau, D. Stepowski, “Laser-Induced Fluorescence Spectroscopy Applied to the Hydroxyl Radical in Flames,” Am. Chem. Soc. Symp. Ser. 134, 131 (1980).
  28. P. W. Fairchild, G. P. Smith, D. R. Crosley, “Collisional Quenching of A 2Σ+ OH at Elevated Temperatures,” J. Chem. Phys. 79, 1795 (1983).
    [CrossRef]
  29. T. G. Slanger, “Reactions of Electronically Excited Diatomic Molecules,” in Reactions of Small Transient Species, A. Fontijn, Ed. (Academic, London, 1983), Chap. 5.
  30. T. A. Cool, P. J. H. Tjossem, “Direct Observations of Chemi-Ionization in Hydrocarbon Flames Enhanced by Laser-Excited Methylidene Radicals CH* (A2Δ) and CH* (B2Σ−),” Chem. Phys. Lett., 111, 82 (1984).
    [CrossRef]
  31. There is a typographical error in Ref. 4 in which 34 Å2 was given (R. J. Cattolica, Sandia National Laboratories; private communication).
  32. W. Brennen, T. Carrington, “Chemiluminescence of CH in the O + C2H2 Reaction: Rotational Relaxation and Quenching,” J. Chem. Phys. 46, 7 (1967).
    [CrossRef]
  33. Utilizing an average relative velocity (8 kT/πμ)1/2, different from that used in the definition for cross section in Ref. 31.

1985 (1)

N. L. Garland, D. R. Crosley, “Relative Transition Probability Measurements in the A-X and B-X Systems of CH,” J. Quant. Spectrosc. Radiat. Transfer 33, 591 (1985).
[CrossRef]

1984 (4)

T. A. Cool, P. J. H. Tjossem, “Direct Observations of Chemi-Ionization in Hydrocarbon Flames Enhanced by Laser-Excited Methylidene Radicals CH* (A2Δ) and CH* (B2Σ−),” Chem. Phys. Lett., 111, 82 (1984).
[CrossRef]

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low-Pressure Flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363 (1984).
[CrossRef]

R. A. Copeland, D. R. Crosley, “Rotational Dependence of Electronic Quenching of OH (A 2Σ + V1 = O),” Chem. Phys. Lett. 107, 295 (1984); R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2 Σ+OH and OD,” J. Chem. Phys. 82, 4022 (1985).
[CrossRef]

G. L. Switzer et al. “Simultaneous CARS and Luminosity Measurements in a Bluff-Body Combustor,” Prog. Astronaut. Aeronaut, 92, 82 (1984).

1983 (5)

D. R. Crosley, G. P. Smith, “Laser-Induced Fluorescence Spectroscopy for Combustion Diagnostics,” Opt. Eng. 22, 545 (1983).
[CrossRef]

Y. Takubo, H. Yano, M. Matsuoka, M. Shimazu, “Saturation Behavior of Laser-Induced CH Fluorescence in a Propane–Air Flame,” J. Quant. Spectrosc. Radiat. Transfer 30, 163 (1983).
[CrossRef]

K. Kohse-Hoinghaus, W. Perc, T. Just, “Laser-Induced Saturated Fluorescence as a Method for the Determination of Radical Concentrations in Flames,” Ber. Bunsenges. Phys. Chem. 87, 1052 (1983).
[CrossRef]

G. P. Smith, D. R. Crosley, “Vibrational Energy Transfer in A2Σ+ OH in Flames,” Appl. Opt. 22, 1428 (1983).
[CrossRef] [PubMed]

P. W. Fairchild, G. P. Smith, D. R. Crosley, “Collisional Quenching of A 2Σ+ OH at Elevated Temperatures,” J. Chem. Phys. 79, 1795 (1983).
[CrossRef]

1982 (1)

D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27 (1982).
[CrossRef]

1981 (1)

D. R. Crosley, “Collisional Effects on Laser-Induced Fluorescence Flame Measurements,” Opt. Eng. 20, 511 (1981).
[CrossRef]

1980 (2)

A. J. Kotlar, A. Gelb, D. R. Crosley, “A Multi-Level Model of Response to Laser Fluorescence Excitation in OH,” Am. Chem. Soc. Symp. Ser. 134, 137 (1980).

M. J. Cottereau, D. Stepowski, “Laser-Induced Fluorescence Spectroscopy Applied to the Hydroxyl Radical in Flames,” Am. Chem. Soc. Symp. Ser. 134, 131 (1980).

1979 (2)

P. A. Bonczyk, J. A. Shirley, “Measurement of CH and CN Concentration in Flames by Laser-Induced Saturated Fluorescence,” Combust. Flame 34, 253 (1979).
[CrossRef]

K. Fujiwara, N. Omenetto, J. B. Bradshaw, J. N. Bower, S. Nikdel, J. D. Winefordner, “Laser-Induced Molecular Background Fluorescence in Flames,” Spectrochim. Acta Part B 34, 317 (1979).
[CrossRef]

1975 (3)

In the older literature on CH, the Λ doublets are referred to as c [overall parity +(−)N] and d[−(−)N]. Modern notation [see J. M. Brown et al., “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500 (1975)] uses e [overall parity +(−)J−1/2 for a doublet state] and f [−(−)J−1/2]. The correspondence is then e ↔ c, f ↔ d for an F1 level [J = N + 1/2] and e ↔ d, f ↔ c for F2[J = N − 1/2].
[CrossRef]

M. Schmidt, H. A. Gillis, M. Clerc, “Variation in the Intensity Distribution of the CH and CD (A2Δ − X 2π) Band Rotational Lines during Fluorescence,” J. Phys. Chem. 79, 2531 (1975).
[CrossRef]

C. I. M. Beenakker, P. J. F. Verbeek, G. R. Mohlmann, F. J. DeHeer, “The Intensity Distribution in the CH (A 2Δ − X 2π) Spectrum Produced by Electron Impact on Acetylene,” J. Quant. Spectrosc. Radiat. Transfer 15, 333 (1975).
[CrossRef]

1974 (1)

B. M. Krupp, “A New Analysis of the A2Δ − X 2π system of CH,” Astrophys. J. 189, 389 (1974).
[CrossRef]

1973 (1)

1970 (1)

E. M. Bulewicz, P. J. Padley, R. E. Smith, “Spectroscopic Studies of C2, CH and OH Radicals in Low Pressure Acetylene + Oxygen Flames,” Proc. R. Soc. London Ser. A 315, 129 (1970).
[CrossRef]

1967 (1)

W. Brennen, T. Carrington, “Chemiluminescence of CH in the O + C2H2 Reaction: Rotational Relaxation and Quenching,” J. Chem. Phys. 46, 7 (1967).
[CrossRef]

1962 (1)

G. H. Dieke, N. M. Crosswhite, “The Ultraviolet Bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

Barnes, R. H.

Beenakker, C. I. M.

C. I. M. Beenakker, P. J. F. Verbeek, G. R. Mohlmann, F. J. DeHeer, “The Intensity Distribution in the CH (A 2Δ − X 2π) Spectrum Produced by Electron Impact on Acetylene,” J. Quant. Spectrosc. Radiat. Transfer 15, 333 (1975).
[CrossRef]

Boncyzk, P. A.

J. F. Verdieck, P. A. Boncyzk, “Laser-Induced Saturated Fluorescence Investigations of CH, CN and NO in Flames,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1559.
[CrossRef]

Bonczyk, P. A.

P. A. Bonczyk, J. A. Shirley, “Measurement of CH and CN Concentration in Flames by Laser-Induced Saturated Fluorescence,” Combust. Flame 34, 253 (1979).
[CrossRef]

Bower, J. N.

K. Fujiwara, N. Omenetto, J. B. Bradshaw, J. N. Bower, S. Nikdel, J. D. Winefordner, “Laser-Induced Molecular Background Fluorescence in Flames,” Spectrochim. Acta Part B 34, 317 (1979).
[CrossRef]

Bradshaw, J. B.

K. Fujiwara, N. Omenetto, J. B. Bradshaw, J. N. Bower, S. Nikdel, J. D. Winefordner, “Laser-Induced Molecular Background Fluorescence in Flames,” Spectrochim. Acta Part B 34, 317 (1979).
[CrossRef]

Brennen, W.

W. Brennen, T. Carrington, “Chemiluminescence of CH in the O + C2H2 Reaction: Rotational Relaxation and Quenching,” J. Chem. Phys. 46, 7 (1967).
[CrossRef]

Brown, J. M.

In the older literature on CH, the Λ doublets are referred to as c [overall parity +(−)N] and d[−(−)N]. Modern notation [see J. M. Brown et al., “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500 (1975)] uses e [overall parity +(−)J−1/2 for a doublet state] and f [−(−)J−1/2]. The correspondence is then e ↔ c, f ↔ d for an F1 level [J = N + 1/2] and e ↔ d, f ↔ c for F2[J = N − 1/2].
[CrossRef]

Bulewicz, E. M.

E. M. Bulewicz, P. J. Padley, R. E. Smith, “Spectroscopic Studies of C2, CH and OH Radicals in Low Pressure Acetylene + Oxygen Flames,” Proc. R. Soc. London Ser. A 315, 129 (1970).
[CrossRef]

Carrington, T.

W. Brennen, T. Carrington, “Chemiluminescence of CH in the O + C2H2 Reaction: Rotational Relaxation and Quenching,” J. Chem. Phys. 46, 7 (1967).
[CrossRef]

Cattolica, R. J.

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low-Pressure Flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363 (1984).
[CrossRef]

There is a typographical error in Ref. 4 in which 34 Å2 was given (R. J. Cattolica, Sandia National Laboratories; private communication).

Clerc, M.

M. Schmidt, H. A. Gillis, M. Clerc, “Variation in the Intensity Distribution of the CH and CD (A2Δ − X 2π) Band Rotational Lines during Fluorescence,” J. Phys. Chem. 79, 2531 (1975).
[CrossRef]

Cool, T. A.

T. A. Cool, P. J. H. Tjossem, “Direct Observations of Chemi-Ionization in Hydrocarbon Flames Enhanced by Laser-Excited Methylidene Radicals CH* (A2Δ) and CH* (B2Σ−),” Chem. Phys. Lett., 111, 82 (1984).
[CrossRef]

Copeland, R. A.

R. A. Copeland, D. R. Crosley, “Rotational Dependence of Electronic Quenching of OH (A 2Σ + V1 = O),” Chem. Phys. Lett. 107, 295 (1984); R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2 Σ+OH and OD,” J. Chem. Phys. 82, 4022 (1985).
[CrossRef]

Corliss, J. M.

J. M. Corliss, Battelle Columbus Laboratories; private communication (1984).

Cottereau, M.

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low-Pressure Flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363 (1984).
[CrossRef]

Cottereau, M. J.

M. J. Cottereau, D. Stepowski, “Laser-Induced Fluorescence Spectroscopy Applied to the Hydroxyl Radical in Flames,” Am. Chem. Soc. Symp. Ser. 134, 131 (1980).

Crosley, D. R.

N. L. Garland, D. R. Crosley, “Relative Transition Probability Measurements in the A-X and B-X Systems of CH,” J. Quant. Spectrosc. Radiat. Transfer 33, 591 (1985).
[CrossRef]

R. A. Copeland, D. R. Crosley, “Rotational Dependence of Electronic Quenching of OH (A 2Σ + V1 = O),” Chem. Phys. Lett. 107, 295 (1984); R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2 Σ+OH and OD,” J. Chem. Phys. 82, 4022 (1985).
[CrossRef]

G. P. Smith, D. R. Crosley, “Vibrational Energy Transfer in A2Σ+ OH in Flames,” Appl. Opt. 22, 1428 (1983).
[CrossRef] [PubMed]

P. W. Fairchild, G. P. Smith, D. R. Crosley, “Collisional Quenching of A 2Σ+ OH at Elevated Temperatures,” J. Chem. Phys. 79, 1795 (1983).
[CrossRef]

D. R. Crosley, G. P. Smith, “Laser-Induced Fluorescence Spectroscopy for Combustion Diagnostics,” Opt. Eng. 22, 545 (1983).
[CrossRef]

D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27 (1982).
[CrossRef]

D. R. Crosley, “Collisional Effects on Laser-Induced Fluorescence Flame Measurements,” Opt. Eng. 20, 511 (1981).
[CrossRef]

A. J. Kotlar, A. Gelb, D. R. Crosley, “A Multi-Level Model of Response to Laser Fluorescence Excitation in OH,” Am. Chem. Soc. Symp. Ser. 134, 137 (1980).

G. P. Smith, D. R. Crosley, “Quantitative Laser-Induced Fluorescence in OH: Transition Probabilities and the Influence of Energy Transfer,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1511.
[CrossRef]

M. J. Dyer, D. R. Crosley, “Fluorescence Imaging for Flame Chemistry,” in Proceedings, International Conference on Lasers ’84K. M. Corcoran, D. M. Sullivan, W. C. Stwalley, Eds. (STS Press, McLean, Va., 1985), p. 211.

Crosswhite, N. M.

G. H. Dieke, N. M. Crosswhite, “The Ultraviolet Bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

DeHeer, F. J.

C. I. M. Beenakker, P. J. F. Verbeek, G. R. Mohlmann, F. J. DeHeer, “The Intensity Distribution in the CH (A 2Δ − X 2π) Spectrum Produced by Electron Impact on Acetylene,” J. Quant. Spectrosc. Radiat. Transfer 15, 333 (1975).
[CrossRef]

Dieke, G. H.

G. H. Dieke, N. M. Crosswhite, “The Ultraviolet Bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

Dyer, M. J.

M. J. Dyer, D. R. Crosley, “Fluorescence Imaging for Flame Chemistry,” in Proceedings, International Conference on Lasers ’84K. M. Corcoran, D. M. Sullivan, W. C. Stwalley, Eds. (STS Press, McLean, Va., 1985), p. 211.

Fairchild, P. W.

P. W. Fairchild, G. P. Smith, D. R. Crosley, “Collisional Quenching of A 2Σ+ OH at Elevated Temperatures,” J. Chem. Phys. 79, 1795 (1983).
[CrossRef]

Fujiwara, K.

K. Fujiwara, N. Omenetto, J. B. Bradshaw, J. N. Bower, S. Nikdel, J. D. Winefordner, “Laser-Induced Molecular Background Fluorescence in Flames,” Spectrochim. Acta Part B 34, 317 (1979).
[CrossRef]

Garland, N. L.

N. L. Garland, D. R. Crosley, “Relative Transition Probability Measurements in the A-X and B-X Systems of CH,” J. Quant. Spectrosc. Radiat. Transfer 33, 591 (1985).
[CrossRef]

Gelb, A.

A. J. Kotlar, A. Gelb, D. R. Crosley, “A Multi-Level Model of Response to Laser Fluorescence Excitation in OH,” Am. Chem. Soc. Symp. Ser. 134, 137 (1980).

Gillis, H. A.

M. Schmidt, H. A. Gillis, M. Clerc, “Variation in the Intensity Distribution of the CH and CD (A2Δ − X 2π) Band Rotational Lines during Fluorescence,” J. Phys. Chem. 79, 2531 (1975).
[CrossRef]

Heidenreich, R.

K. Kohse-Hoinghaus, R. Heidenreich, T. Just, “Determination of Absolute OH and CH concentrations in a Low Pressure Flame by Laser-Induced Saturated Fluorescence,” in Proceedings, Twentieth Symposium (International) on Combustion, (Combustion Institute, Pittsburgh, 1985), p. 1177.
[CrossRef]

Just, T.

K. Kohse-Hoinghaus, W. Perc, T. Just, “Laser-Induced Saturated Fluorescence as a Method for the Determination of Radical Concentrations in Flames,” Ber. Bunsenges. Phys. Chem. 87, 1052 (1983).
[CrossRef]

K. Kohse-Hoinghaus, R. Heidenreich, T. Just, “Determination of Absolute OH and CH concentrations in a Low Pressure Flame by Laser-Induced Saturated Fluorescence,” in Proceedings, Twentieth Symposium (International) on Combustion, (Combustion Institute, Pittsburgh, 1985), p. 1177.
[CrossRef]

Kircher, J. F.

Kohse-Hoinghaus, K.

K. Kohse-Hoinghaus, W. Perc, T. Just, “Laser-Induced Saturated Fluorescence as a Method for the Determination of Radical Concentrations in Flames,” Ber. Bunsenges. Phys. Chem. 87, 1052 (1983).
[CrossRef]

K. Kohse-Hoinghaus, R. Heidenreich, T. Just, “Determination of Absolute OH and CH concentrations in a Low Pressure Flame by Laser-Induced Saturated Fluorescence,” in Proceedings, Twentieth Symposium (International) on Combustion, (Combustion Institute, Pittsburgh, 1985), p. 1177.
[CrossRef]

Kotlar, A. J.

A. J. Kotlar, A. Gelb, D. R. Crosley, “A Multi-Level Model of Response to Laser Fluorescence Excitation in OH,” Am. Chem. Soc. Symp. Ser. 134, 137 (1980).

Kovacs, I.

I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules (Elsevier, New York, 1969).

Krupp, B. M.

B. M. Krupp, “A New Analysis of the A2Δ − X 2π system of CH,” Astrophys. J. 189, 389 (1974).
[CrossRef]

Matsuoka, M.

Y. Takubo, H. Yano, M. Matsuoka, M. Shimazu, “Saturation Behavior of Laser-Induced CH Fluorescence in a Propane–Air Flame,” J. Quant. Spectrosc. Radiat. Transfer 30, 163 (1983).
[CrossRef]

Moeller, C. E.

Mohlmann, G. R.

C. I. M. Beenakker, P. J. F. Verbeek, G. R. Mohlmann, F. J. DeHeer, “The Intensity Distribution in the CH (A 2Δ − X 2π) Spectrum Produced by Electron Impact on Acetylene,” J. Quant. Spectrosc. Radiat. Transfer 15, 333 (1975).
[CrossRef]

Nikdel, S.

K. Fujiwara, N. Omenetto, J. B. Bradshaw, J. N. Bower, S. Nikdel, J. D. Winefordner, “Laser-Induced Molecular Background Fluorescence in Flames,” Spectrochim. Acta Part B 34, 317 (1979).
[CrossRef]

Omenetto, N.

K. Fujiwara, N. Omenetto, J. B. Bradshaw, J. N. Bower, S. Nikdel, J. D. Winefordner, “Laser-Induced Molecular Background Fluorescence in Flames,” Spectrochim. Acta Part B 34, 317 (1979).
[CrossRef]

Padley, P. J.

E. M. Bulewicz, P. J. Padley, R. E. Smith, “Spectroscopic Studies of C2, CH and OH Radicals in Low Pressure Acetylene + Oxygen Flames,” Proc. R. Soc. London Ser. A 315, 129 (1970).
[CrossRef]

Perc, W.

K. Kohse-Hoinghaus, W. Perc, T. Just, “Laser-Induced Saturated Fluorescence as a Method for the Determination of Radical Concentrations in Flames,” Ber. Bunsenges. Phys. Chem. 87, 1052 (1983).
[CrossRef]

Puechberty, D.

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low-Pressure Flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363 (1984).
[CrossRef]

Schmidt, M.

M. Schmidt, H. A. Gillis, M. Clerc, “Variation in the Intensity Distribution of the CH and CD (A2Δ − X 2π) Band Rotational Lines during Fluorescence,” J. Phys. Chem. 79, 2531 (1975).
[CrossRef]

Shimazu, M.

Y. Takubo, H. Yano, M. Matsuoka, M. Shimazu, “Saturation Behavior of Laser-Induced CH Fluorescence in a Propane–Air Flame,” J. Quant. Spectrosc. Radiat. Transfer 30, 163 (1983).
[CrossRef]

Shirley, J. A.

P. A. Bonczyk, J. A. Shirley, “Measurement of CH and CN Concentration in Flames by Laser-Induced Saturated Fluorescence,” Combust. Flame 34, 253 (1979).
[CrossRef]

Slanger, T. G.

T. G. Slanger, “Reactions of Electronically Excited Diatomic Molecules,” in Reactions of Small Transient Species, A. Fontijn, Ed. (Academic, London, 1983), Chap. 5.

Smith, G. P.

P. W. Fairchild, G. P. Smith, D. R. Crosley, “Collisional Quenching of A 2Σ+ OH at Elevated Temperatures,” J. Chem. Phys. 79, 1795 (1983).
[CrossRef]

G. P. Smith, D. R. Crosley, “Vibrational Energy Transfer in A2Σ+ OH in Flames,” Appl. Opt. 22, 1428 (1983).
[CrossRef] [PubMed]

D. R. Crosley, G. P. Smith, “Laser-Induced Fluorescence Spectroscopy for Combustion Diagnostics,” Opt. Eng. 22, 545 (1983).
[CrossRef]

D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27 (1982).
[CrossRef]

G. P. Smith, D. R. Crosley, “Quantitative Laser-Induced Fluorescence in OH: Transition Probabilities and the Influence of Energy Transfer,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1511.
[CrossRef]

Smith, R. E.

E. M. Bulewicz, P. J. Padley, R. E. Smith, “Spectroscopic Studies of C2, CH and OH Radicals in Low Pressure Acetylene + Oxygen Flames,” Proc. R. Soc. London Ser. A 315, 129 (1970).
[CrossRef]

Stepowski, D.

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low-Pressure Flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363 (1984).
[CrossRef]

M. J. Cottereau, D. Stepowski, “Laser-Induced Fluorescence Spectroscopy Applied to the Hydroxyl Radical in Flames,” Am. Chem. Soc. Symp. Ser. 134, 131 (1980).

Switzer, G. L.

G. L. Switzer et al. “Simultaneous CARS and Luminosity Measurements in a Bluff-Body Combustor,” Prog. Astronaut. Aeronaut, 92, 82 (1984).

Takubo, Y.

Y. Takubo, H. Yano, M. Matsuoka, M. Shimazu, “Saturation Behavior of Laser-Induced CH Fluorescence in a Propane–Air Flame,” J. Quant. Spectrosc. Radiat. Transfer 30, 163 (1983).
[CrossRef]

Tjossem, P. J. H.

T. A. Cool, P. J. H. Tjossem, “Direct Observations of Chemi-Ionization in Hydrocarbon Flames Enhanced by Laser-Excited Methylidene Radicals CH* (A2Δ) and CH* (B2Σ−),” Chem. Phys. Lett., 111, 82 (1984).
[CrossRef]

Verbeek, P. J. F.

C. I. M. Beenakker, P. J. F. Verbeek, G. R. Mohlmann, F. J. DeHeer, “The Intensity Distribution in the CH (A 2Δ − X 2π) Spectrum Produced by Electron Impact on Acetylene,” J. Quant. Spectrosc. Radiat. Transfer 15, 333 (1975).
[CrossRef]

Verber, C. M.

Verdieck, J. F.

J. F. Verdieck, P. A. Boncyzk, “Laser-Induced Saturated Fluorescence Investigations of CH, CN and NO in Flames,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1559.
[CrossRef]

Winefordner, J. D.

K. Fujiwara, N. Omenetto, J. B. Bradshaw, J. N. Bower, S. Nikdel, J. D. Winefordner, “Laser-Induced Molecular Background Fluorescence in Flames,” Spectrochim. Acta Part B 34, 317 (1979).
[CrossRef]

Yano, H.

Y. Takubo, H. Yano, M. Matsuoka, M. Shimazu, “Saturation Behavior of Laser-Induced CH Fluorescence in a Propane–Air Flame,” J. Quant. Spectrosc. Radiat. Transfer 30, 163 (1983).
[CrossRef]

Am. Chem. Soc. Symp. Ser. (2)

A. J. Kotlar, A. Gelb, D. R. Crosley, “A Multi-Level Model of Response to Laser Fluorescence Excitation in OH,” Am. Chem. Soc. Symp. Ser. 134, 137 (1980).

M. J. Cottereau, D. Stepowski, “Laser-Induced Fluorescence Spectroscopy Applied to the Hydroxyl Radical in Flames,” Am. Chem. Soc. Symp. Ser. 134, 131 (1980).

Appl. Opt. (2)

Astrophys. J. (1)

B. M. Krupp, “A New Analysis of the A2Δ − X 2π system of CH,” Astrophys. J. 189, 389 (1974).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

K. Kohse-Hoinghaus, W. Perc, T. Just, “Laser-Induced Saturated Fluorescence as a Method for the Determination of Radical Concentrations in Flames,” Ber. Bunsenges. Phys. Chem. 87, 1052 (1983).
[CrossRef]

Chem. Phys. Lett. (2)

R. A. Copeland, D. R. Crosley, “Rotational Dependence of Electronic Quenching of OH (A 2Σ + V1 = O),” Chem. Phys. Lett. 107, 295 (1984); R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2 Σ+OH and OD,” J. Chem. Phys. 82, 4022 (1985).
[CrossRef]

T. A. Cool, P. J. H. Tjossem, “Direct Observations of Chemi-Ionization in Hydrocarbon Flames Enhanced by Laser-Excited Methylidene Radicals CH* (A2Δ) and CH* (B2Σ−),” Chem. Phys. Lett., 111, 82 (1984).
[CrossRef]

Combust. Flame (2)

P. A. Bonczyk, J. A. Shirley, “Measurement of CH and CN Concentration in Flames by Laser-Induced Saturated Fluorescence,” Combust. Flame 34, 253 (1979).
[CrossRef]

D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27 (1982).
[CrossRef]

J. Chem. Phys. (2)

W. Brennen, T. Carrington, “Chemiluminescence of CH in the O + C2H2 Reaction: Rotational Relaxation and Quenching,” J. Chem. Phys. 46, 7 (1967).
[CrossRef]

P. W. Fairchild, G. P. Smith, D. R. Crosley, “Collisional Quenching of A 2Σ+ OH at Elevated Temperatures,” J. Chem. Phys. 79, 1795 (1983).
[CrossRef]

J. Mol. Spectrosc. (1)

In the older literature on CH, the Λ doublets are referred to as c [overall parity +(−)N] and d[−(−)N]. Modern notation [see J. M. Brown et al., “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500 (1975)] uses e [overall parity +(−)J−1/2 for a doublet state] and f [−(−)J−1/2]. The correspondence is then e ↔ c, f ↔ d for an F1 level [J = N + 1/2] and e ↔ d, f ↔ c for F2[J = N − 1/2].
[CrossRef]

J. Phys. Chem. (1)

M. Schmidt, H. A. Gillis, M. Clerc, “Variation in the Intensity Distribution of the CH and CD (A2Δ − X 2π) Band Rotational Lines during Fluorescence,” J. Phys. Chem. 79, 2531 (1975).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (5)

C. I. M. Beenakker, P. J. F. Verbeek, G. R. Mohlmann, F. J. DeHeer, “The Intensity Distribution in the CH (A 2Δ − X 2π) Spectrum Produced by Electron Impact on Acetylene,” J. Quant. Spectrosc. Radiat. Transfer 15, 333 (1975).
[CrossRef]

N. L. Garland, D. R. Crosley, “Relative Transition Probability Measurements in the A-X and B-X Systems of CH,” J. Quant. Spectrosc. Radiat. Transfer 33, 591 (1985).
[CrossRef]

G. H. Dieke, N. M. Crosswhite, “The Ultraviolet Bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97 (1962).
[CrossRef]

Y. Takubo, H. Yano, M. Matsuoka, M. Shimazu, “Saturation Behavior of Laser-Induced CH Fluorescence in a Propane–Air Flame,” J. Quant. Spectrosc. Radiat. Transfer 30, 163 (1983).
[CrossRef]

R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low-Pressure Flame,” J. Quant. Spectrosc. Radiat. Transfer 32, 363 (1984).
[CrossRef]

Opt. Eng. (2)

D. R. Crosley, G. P. Smith, “Laser-Induced Fluorescence Spectroscopy for Combustion Diagnostics,” Opt. Eng. 22, 545 (1983).
[CrossRef]

D. R. Crosley, “Collisional Effects on Laser-Induced Fluorescence Flame Measurements,” Opt. Eng. 20, 511 (1981).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

E. M. Bulewicz, P. J. Padley, R. E. Smith, “Spectroscopic Studies of C2, CH and OH Radicals in Low Pressure Acetylene + Oxygen Flames,” Proc. R. Soc. London Ser. A 315, 129 (1970).
[CrossRef]

Prog. Astronaut. Aeronaut (1)

G. L. Switzer et al. “Simultaneous CARS and Luminosity Measurements in a Bluff-Body Combustor,” Prog. Astronaut. Aeronaut, 92, 82 (1984).

Spectrochim. Acta Part B (1)

K. Fujiwara, N. Omenetto, J. B. Bradshaw, J. N. Bower, S. Nikdel, J. D. Winefordner, “Laser-Induced Molecular Background Fluorescence in Flames,” Spectrochim. Acta Part B 34, 317 (1979).
[CrossRef]

Other (9)

J. F. Verdieck, P. A. Boncyzk, “Laser-Induced Saturated Fluorescence Investigations of CH, CN and NO in Flames,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1559.
[CrossRef]

K. Kohse-Hoinghaus, R. Heidenreich, T. Just, “Determination of Absolute OH and CH concentrations in a Low Pressure Flame by Laser-Induced Saturated Fluorescence,” in Proceedings, Twentieth Symposium (International) on Combustion, (Combustion Institute, Pittsburgh, 1985), p. 1177.
[CrossRef]

M. J. Dyer, D. R. Crosley, “Fluorescence Imaging for Flame Chemistry,” in Proceedings, International Conference on Lasers ’84K. M. Corcoran, D. M. Sullivan, W. C. Stwalley, Eds. (STS Press, McLean, Va., 1985), p. 211.

I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules (Elsevier, New York, 1969).

G. P. Smith, D. R. Crosley, “Quantitative Laser-Induced Fluorescence in OH: Transition Probabilities and the Influence of Energy Transfer,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981), p. 1511.
[CrossRef]

J. M. Corliss, Battelle Columbus Laboratories; private communication (1984).

T. G. Slanger, “Reactions of Electronically Excited Diatomic Molecules,” in Reactions of Small Transient Species, A. Fontijn, Ed. (Academic, London, 1983), Chap. 5.

Utilizing an average relative velocity (8 kT/πμ)1/2, different from that used in the definition for cross section in Ref. 31.

There is a typographical error in Ref. 4 in which 34 Å2 was given (R. J. Cattolica, Sandia National Laboratories; private communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

CH energy level diagram of the first two vibrational levels in the A and B electronic states.

Fig. 2
Fig. 2

Laser excitation scan through the R-branch region of the (0,0) band of the B2ΣX2Π system of CH in a methane–air flame. Fluorescence is collected with the monochromator set for the (0,1) band emission near 435 nm.

Fig. 3
Fig. 3

Boltzmann plots: the natural logarithm of the rotational populations N divided by the degeneracy, as a function of energy of the level for one flame; actual numerical values for N/g are arbitrary. The lines indicate the fitted temperature. (Bottom) N in the υ″ = 0 level of the ground X2Π state from a laser excitation scan in the (0,0) band of the BX system shown in Fig. 1. (Top) N in the υ′ = 0 level of the excited A2Δ state from emission spectra of the (0,0) band of the AX system. While these temperatures are the same within experimental error, that is often not the case as noted in the text.

Fig. 4
Fig. 4

Fluorescence spectrum of the CH AX (0,0) band after excitation of the A2Δ, υ′ = 0, N′ = 14 level of CH at 437.4 nm in a methane–oxygen flame.

Fig. 5
Fig. 5

Fluorescence spectrum of the CH BX (0,0) band after excitation of the B2Σ, υ′ = 0, N′ = 6 level at 392 nm.

Fig. 6
Fig. 6

(Top) Fluorescence spectra after excitation of the A2Δ, υ′ = 1, N′ = 6 level at 434.3 nm. On the left is the fluorescence band from the collisionally populated B (υ′ = 0) state. On the right is the fluorescence band from the pumped A (υ′ = 1) state. The BX (0,0) band was recorded with five times the sensitivity of the AX (1,1) band. (Bottom) Fluorescence spectra after excitation of the B2Σ, υ′ = 0, N′ = 6 level. On the left is the fluorescence band from the pumped B (υ′ = 0) state while on the right is the fluorescence band from the collisionally populated A state. The AX (1,1) band was recorded with twice the sensitivity of the BX (0,0) band. The weak BX (0,1) band overlaps the P branch of the AX (1,1) band.

Tables (3)

Tables Icon

Table I Ratio of RET to Quenching Rates for Rotational Levels in CH A and B States

Tables Icon

Table II Ratio of VET to Quenching Rates for Rotational Levels in the B (v′ = 0) State of CH

Tables Icon

Table III Ratio of EET to Quenching Rates for Rotational levels in CH A and B States

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d N o / d t = 0 = R N e Q N o ,

Metrics