Abstract

A procedure based on the T-matrix method is devised to study the electromagnetic response of chiral, (lossy) dielectric, nonspherical objects exposed to an arbitrary incident field. Reductions in the method for axisymmetric objects are discussed. Using the technique thus developed, the plane wave scattering and absorption characteristics of lossy dielectric, axisymmetric scatterers (spheres as well as prolate and oblate spheroids), with and without chiral properties, are examined at frequencies above 50 GHz. The relative permittivity of the objects is assumed to be frequency dependent, whereas the chiral parameters are set to be constant in the numerical study. From the computed results, it appears that chiral spheres are the most effective objects in retarding the progress of an incident plane wave regardless of its polarization.

© 1985 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wave scattering by a chiral spheroid

M. F. R. Cooray and I. R. Ciric
J. Opt. Soc. Am. A 10(6) 1197-1203 (1993)

Calculation of electromagnetic scattering by a large chiral sphere

Zhen-Sen Wu, Qing-Chao Shang, and Zheng-Jun Li
Appl. Opt. 51(27) 6661-6668 (2012)

Raman and fluorescent scattering by molecules embedded in dielectric spheroids

Dau-Sing Wang, Milton Kerker, and Herman W. Chew
Appl. Opt. 19(14) 2315-2328 (1980)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (55)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription