Abstract

A novel optical architecture (based on holographic optical elements) for making high speed tomographic measurements is presented. The system is designed for making density or species concentration measurements in a nonsteady fluid or combusting flow. Performance evaluations of the optical system are discussed, and a test phase object has been successfully reconstructed using this optical arrangement.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Snyder, L. Hesselink, “Optical Tomography for Flow Visualization of the Density Field Around a Revolving Helicopter Rotor Blade,” Appl. Opt. 23, 3650 (1984).
    [CrossRef] [PubMed]
  2. R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, AIAA J. 80, 1541 (1980).
  3. K. Bennett, R. L. Byer, “Optical Tomography: Experimental Verification of Noise Theory,” Opt. Lett. 9, 270 (1984).
    [CrossRef] [PubMed]
  4. D. W. Sweeney, C. M. Vest, Int. J. Heat Mass Transfer 17, 1443 (1974).
    [CrossRef]
  5. D. J. Cooke, A. A. Ward, “Reflection-Hologram Processing for High Efficiency in Silver-Halide Emulsions,” Appl. Opt. 23, 934 (1984).
    [CrossRef] [PubMed]
  6. Agfa-Gevaert, Holography Newsletter 1, (Oct. 1979).
  7. C. M. Vest, “Interferometry of Strongly Refracting Axisymmetric Phase Objects,” Appl. Opt. 14, 1601 (1975).
    [CrossRef] [PubMed]
  8. A. Devaney, “A Computer Simulation Study of Diffraction Tomography,” IEEE Trans. Biomed. Eng. BME-30, (July1983).
    [CrossRef]
  9. R. Dandliker, R. Thalmann, J. F. Willemin, “Fringe Interpolation by Two-Reference-Beam Holographic Interferometry: Reducing Sensitivity to Hologram Misalignment,” Opt. Commun. 42, 301 (1982).
    [CrossRef]
  10. G. N. Ramachandran, A. V. Lakshminarayanan, Proc. Natl. Acad. Sci. USA 68, 2236 (1971).
    [CrossRef] [PubMed]
  11. L. A. Shepp, B. F. Logan, IEEE Trans. Nucl. Sci. NS-21, 21 (1974).
  12. L. Hesselink, M. Richmand, W. C. Reynolds, “Holographic Optical Element for Flow Visualization Inside a Circular Cylinder,” submitted to Appl. Opt.

1984

1983

A. Devaney, “A Computer Simulation Study of Diffraction Tomography,” IEEE Trans. Biomed. Eng. BME-30, (July1983).
[CrossRef]

1982

R. Dandliker, R. Thalmann, J. F. Willemin, “Fringe Interpolation by Two-Reference-Beam Holographic Interferometry: Reducing Sensitivity to Hologram Misalignment,” Opt. Commun. 42, 301 (1982).
[CrossRef]

1980

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, AIAA J. 80, 1541 (1980).

1975

1974

D. W. Sweeney, C. M. Vest, Int. J. Heat Mass Transfer 17, 1443 (1974).
[CrossRef]

L. A. Shepp, B. F. Logan, IEEE Trans. Nucl. Sci. NS-21, 21 (1974).

1971

G. N. Ramachandran, A. V. Lakshminarayanan, Proc. Natl. Acad. Sci. USA 68, 2236 (1971).
[CrossRef] [PubMed]

Bennett, K.

Byer, R. L.

Cooke, D. J.

Dandliker, R.

R. Dandliker, R. Thalmann, J. F. Willemin, “Fringe Interpolation by Two-Reference-Beam Holographic Interferometry: Reducing Sensitivity to Hologram Misalignment,” Opt. Commun. 42, 301 (1982).
[CrossRef]

Devaney, A.

A. Devaney, “A Computer Simulation Study of Diffraction Tomography,” IEEE Trans. Biomed. Eng. BME-30, (July1983).
[CrossRef]

Emmerman, P. J.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, AIAA J. 80, 1541 (1980).

Goulard, R.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, AIAA J. 80, 1541 (1980).

Hesselink, L.

R. Snyder, L. Hesselink, “Optical Tomography for Flow Visualization of the Density Field Around a Revolving Helicopter Rotor Blade,” Appl. Opt. 23, 3650 (1984).
[CrossRef] [PubMed]

L. Hesselink, M. Richmand, W. C. Reynolds, “Holographic Optical Element for Flow Visualization Inside a Circular Cylinder,” submitted to Appl. Opt.

Lakshminarayanan, A. V.

G. N. Ramachandran, A. V. Lakshminarayanan, Proc. Natl. Acad. Sci. USA 68, 2236 (1971).
[CrossRef] [PubMed]

Logan, B. F.

L. A. Shepp, B. F. Logan, IEEE Trans. Nucl. Sci. NS-21, 21 (1974).

Ramachandran, G. N.

G. N. Ramachandran, A. V. Lakshminarayanan, Proc. Natl. Acad. Sci. USA 68, 2236 (1971).
[CrossRef] [PubMed]

Reynolds, W. C.

L. Hesselink, M. Richmand, W. C. Reynolds, “Holographic Optical Element for Flow Visualization Inside a Circular Cylinder,” submitted to Appl. Opt.

Richmand, M.

L. Hesselink, M. Richmand, W. C. Reynolds, “Holographic Optical Element for Flow Visualization Inside a Circular Cylinder,” submitted to Appl. Opt.

Santoro, R. J.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, AIAA J. 80, 1541 (1980).

Semerjian, H. G.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, AIAA J. 80, 1541 (1980).

Shepp, L. A.

L. A. Shepp, B. F. Logan, IEEE Trans. Nucl. Sci. NS-21, 21 (1974).

Snyder, R.

Sweeney, D. W.

D. W. Sweeney, C. M. Vest, Int. J. Heat Mass Transfer 17, 1443 (1974).
[CrossRef]

Thalmann, R.

R. Dandliker, R. Thalmann, J. F. Willemin, “Fringe Interpolation by Two-Reference-Beam Holographic Interferometry: Reducing Sensitivity to Hologram Misalignment,” Opt. Commun. 42, 301 (1982).
[CrossRef]

Vest, C. M.

Ward, A. A.

Willemin, J. F.

R. Dandliker, R. Thalmann, J. F. Willemin, “Fringe Interpolation by Two-Reference-Beam Holographic Interferometry: Reducing Sensitivity to Hologram Misalignment,” Opt. Commun. 42, 301 (1982).
[CrossRef]

AIAA J.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, AIAA J. 80, 1541 (1980).

Appl. Opt.

IEEE Trans. Biomed. Eng.

A. Devaney, “A Computer Simulation Study of Diffraction Tomography,” IEEE Trans. Biomed. Eng. BME-30, (July1983).
[CrossRef]

IEEE Trans. Nucl. Sci.

L. A. Shepp, B. F. Logan, IEEE Trans. Nucl. Sci. NS-21, 21 (1974).

Int. J. Heat Mass Transfer

D. W. Sweeney, C. M. Vest, Int. J. Heat Mass Transfer 17, 1443 (1974).
[CrossRef]

Opt. Commun.

R. Dandliker, R. Thalmann, J. F. Willemin, “Fringe Interpolation by Two-Reference-Beam Holographic Interferometry: Reducing Sensitivity to Hologram Misalignment,” Opt. Commun. 42, 301 (1982).
[CrossRef]

Opt. Lett.

Proc. Natl. Acad. Sci. USA

G. N. Ramachandran, A. V. Lakshminarayanan, Proc. Natl. Acad. Sci. USA 68, 2236 (1971).
[CrossRef] [PubMed]

Other

L. Hesselink, M. Richmand, W. C. Reynolds, “Holographic Optical Element for Flow Visualization Inside a Circular Cylinder,” submitted to Appl. Opt.

Agfa-Gevaert, Holography Newsletter 1, (Oct. 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the experimental configuration. For the tests described, only the beam path shown is employed. The coordinates shown are fixed to the rod. The rod is rotated to obtain projections at angles measured relative to the beam as shown.

Fig. 2
Fig. 2

Image of Air Force test pattern. The smallest visible pattern corresponds to a resolution of at least 10 lines/mm in the object.

Fig. 3
Fig. 3

Interferogram for 144° projection. The region outlined by the box is the data window for the projections. Note the periodic structure perpendicular to the axis of the rod.

Fig. 4
Fig. 4

Spectral energy density averaged over the whole data window of one projection (144°). The seventh component is clearly prominent with some energy in the fifteenth component second harmonic.

Fig. 5
Fig. 5

Phase offset of the fringes vs the horizontal component in one projection (144°). Discontinuities occur as the phase exceeds π/2 or −π/2.

Fig. 6
Fig. 6

Unraveled phase offset for one projection (144°). The phase wraparound has been removed to make the projection continuous.

Fig. 7
Fig. 7

Interpolated projections. The complete reduced data base is shown inverted for easier viewing.

Fig. 8
Fig. 8

Reconstruction of the index of refraction in the rod.

Fig. 9
Fig. 9

Reconstruction of the index of refraction in the rod. Lighter values correspond to a higher index of refraction. Note the asymmetry and the hole in the center.

Fig. 10
Fig. 10

Cross section through center of the reconstruction. Radial structure is shown as well as a hole in the center of the rod.

Fig. 11
Fig. 11

Transmittance photograph of a 6-mm long slice of the rod. Note the correspondence with the results of the reconstruction in Fig. 9. The edge of the rod was chipped as it was being cut.

Metrics