Abstract

Local oil saturation (fluid composition within the void spaces of sandstone) is computed from pixel image data. Limitations of CT observation of fluid displacement are discussed. Images of viscous fingering, time derivatives of local composition, and residual oil distribution are given for the case of water displacing oil from porous media.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. van Meurs, “Use of Transparent Three Dimensional Models for Studying the Mechanisms of Flow Processes in Oil Reservoirs,” Trans, AIME 210, 295 (1957).
  2. E. J. Peters, “Stability Theory and Fiscous Fingering in Porous Media,” Ph.D. thesis, University of Alberta, Edmonton (1979).
  3. R. W. Parson, “Microwave Attenuation—A Tool for Monitoring Saturation in Laboratory Flooding Experiments,” Soc. Pet. Eng. J. 11, 72 (1975).
  4. M. C. Leverett, “Flow of Oil-Water Mixtures Through Unconsolidated Sand,” Trans. AIME 132, 149 (1939).
  5. F. S. Castellana, J. L. Spencer, A. Cartolano, “Application of the Gamma Camera to Studies of Flow and Mixing in Reactor Vessels,” Ind. Eng. Chem. Fundam. 19, 222 (1980).
    [CrossRef]
  6. M. R. Gambini, J. Picker, “Anger Camera Detector Theory and Design,” Nucl. Med. Inst. 2, 30 (1981).
  7. R. L. Slobod, B. H. Caudle, “X-ray Shadowgraph Studies of Areal Sweepout Efficiencies,” Trans. AIME 195, 265 (1952).
  8. T. F. Moore, R. L. Slobod, “The Effect of Viscosity and Capillarity on the Displacement of Oil by Water,” Prod. Mon. (20Aug.1956).
  9. S. Y. Wang, S. Ayral, C. C. Gryte, “Computer-Assisted Tomography for the Observation of Oil Displacement in Porous Media,” Soc. Pet. Eng. J. 53 (Feb.1984).
  10. S. Y. Wang, “Application of Computer-Assisted Tomography to Displacement in Porous Media,” Columbia University, New York (1983).
  11. S. Y. Wang, S. Ayral, F. S. Castellana, Carl C. Gryte, “Reconstruction of Oil Saturation Distribution Histories During Immiscible Liquid Displacement by Computer Assisted Tomography,” Am. Inst. Chem. Eng. J. 30, 642 (1984).
    [CrossRef]
  12. H. K. Genant, D. Boyd, “Quantitative Bone Mineral Analysis Using Dual Energy Computed Tomography,” Invest. Radiol. 12, 545 (1977).
    [CrossRef] [PubMed]
  13. R. L. Chuoke, P. van Meurs, C. van der Poel, “Instability of Slow Immiscible Viscous Liquid-Liquid Displacement in Permeable Media,” Trans. AIME 216, 188 (1959).
  14. A. C. Payatakes, K. M. Ng, R. W. Flumerfelt, “Oil Ganglion Dynamics During Immiscible Displacement: Model Formulation,” Am. Inst. Chem. Eng. J. 26, 430 (1980).
    [CrossRef]
  15. D. Wilkinson, J. F. Willemsen, “Invasion Percolation: a New Form of Percolation Theory,” J. Phys. A 16, 3365 (1983).
    [CrossRef]

1984 (2)

S. Y. Wang, S. Ayral, C. C. Gryte, “Computer-Assisted Tomography for the Observation of Oil Displacement in Porous Media,” Soc. Pet. Eng. J. 53 (Feb.1984).

S. Y. Wang, S. Ayral, F. S. Castellana, Carl C. Gryte, “Reconstruction of Oil Saturation Distribution Histories During Immiscible Liquid Displacement by Computer Assisted Tomography,” Am. Inst. Chem. Eng. J. 30, 642 (1984).
[CrossRef]

1983 (1)

D. Wilkinson, J. F. Willemsen, “Invasion Percolation: a New Form of Percolation Theory,” J. Phys. A 16, 3365 (1983).
[CrossRef]

1981 (1)

M. R. Gambini, J. Picker, “Anger Camera Detector Theory and Design,” Nucl. Med. Inst. 2, 30 (1981).

1980 (2)

A. C. Payatakes, K. M. Ng, R. W. Flumerfelt, “Oil Ganglion Dynamics During Immiscible Displacement: Model Formulation,” Am. Inst. Chem. Eng. J. 26, 430 (1980).
[CrossRef]

F. S. Castellana, J. L. Spencer, A. Cartolano, “Application of the Gamma Camera to Studies of Flow and Mixing in Reactor Vessels,” Ind. Eng. Chem. Fundam. 19, 222 (1980).
[CrossRef]

1977 (1)

H. K. Genant, D. Boyd, “Quantitative Bone Mineral Analysis Using Dual Energy Computed Tomography,” Invest. Radiol. 12, 545 (1977).
[CrossRef] [PubMed]

1975 (1)

R. W. Parson, “Microwave Attenuation—A Tool for Monitoring Saturation in Laboratory Flooding Experiments,” Soc. Pet. Eng. J. 11, 72 (1975).

1959 (1)

R. L. Chuoke, P. van Meurs, C. van der Poel, “Instability of Slow Immiscible Viscous Liquid-Liquid Displacement in Permeable Media,” Trans. AIME 216, 188 (1959).

1957 (1)

P. van Meurs, “Use of Transparent Three Dimensional Models for Studying the Mechanisms of Flow Processes in Oil Reservoirs,” Trans, AIME 210, 295 (1957).

1952 (1)

R. L. Slobod, B. H. Caudle, “X-ray Shadowgraph Studies of Areal Sweepout Efficiencies,” Trans. AIME 195, 265 (1952).

1939 (1)

M. C. Leverett, “Flow of Oil-Water Mixtures Through Unconsolidated Sand,” Trans. AIME 132, 149 (1939).

Ayral, S.

S. Y. Wang, S. Ayral, C. C. Gryte, “Computer-Assisted Tomography for the Observation of Oil Displacement in Porous Media,” Soc. Pet. Eng. J. 53 (Feb.1984).

S. Y. Wang, S. Ayral, F. S. Castellana, Carl C. Gryte, “Reconstruction of Oil Saturation Distribution Histories During Immiscible Liquid Displacement by Computer Assisted Tomography,” Am. Inst. Chem. Eng. J. 30, 642 (1984).
[CrossRef]

Boyd, D.

H. K. Genant, D. Boyd, “Quantitative Bone Mineral Analysis Using Dual Energy Computed Tomography,” Invest. Radiol. 12, 545 (1977).
[CrossRef] [PubMed]

Cartolano, A.

F. S. Castellana, J. L. Spencer, A. Cartolano, “Application of the Gamma Camera to Studies of Flow and Mixing in Reactor Vessels,” Ind. Eng. Chem. Fundam. 19, 222 (1980).
[CrossRef]

Castellana, F. S.

S. Y. Wang, S. Ayral, F. S. Castellana, Carl C. Gryte, “Reconstruction of Oil Saturation Distribution Histories During Immiscible Liquid Displacement by Computer Assisted Tomography,” Am. Inst. Chem. Eng. J. 30, 642 (1984).
[CrossRef]

F. S. Castellana, J. L. Spencer, A. Cartolano, “Application of the Gamma Camera to Studies of Flow and Mixing in Reactor Vessels,” Ind. Eng. Chem. Fundam. 19, 222 (1980).
[CrossRef]

Caudle, B. H.

R. L. Slobod, B. H. Caudle, “X-ray Shadowgraph Studies of Areal Sweepout Efficiencies,” Trans. AIME 195, 265 (1952).

Chuoke, R. L.

R. L. Chuoke, P. van Meurs, C. van der Poel, “Instability of Slow Immiscible Viscous Liquid-Liquid Displacement in Permeable Media,” Trans. AIME 216, 188 (1959).

Flumerfelt, R. W.

A. C. Payatakes, K. M. Ng, R. W. Flumerfelt, “Oil Ganglion Dynamics During Immiscible Displacement: Model Formulation,” Am. Inst. Chem. Eng. J. 26, 430 (1980).
[CrossRef]

Gambini, M. R.

M. R. Gambini, J. Picker, “Anger Camera Detector Theory and Design,” Nucl. Med. Inst. 2, 30 (1981).

Genant, H. K.

H. K. Genant, D. Boyd, “Quantitative Bone Mineral Analysis Using Dual Energy Computed Tomography,” Invest. Radiol. 12, 545 (1977).
[CrossRef] [PubMed]

Gryte, C. C.

S. Y. Wang, S. Ayral, C. C. Gryte, “Computer-Assisted Tomography for the Observation of Oil Displacement in Porous Media,” Soc. Pet. Eng. J. 53 (Feb.1984).

Gryte, Carl C.

S. Y. Wang, S. Ayral, F. S. Castellana, Carl C. Gryte, “Reconstruction of Oil Saturation Distribution Histories During Immiscible Liquid Displacement by Computer Assisted Tomography,” Am. Inst. Chem. Eng. J. 30, 642 (1984).
[CrossRef]

Leverett, M. C.

M. C. Leverett, “Flow of Oil-Water Mixtures Through Unconsolidated Sand,” Trans. AIME 132, 149 (1939).

Moore, T. F.

T. F. Moore, R. L. Slobod, “The Effect of Viscosity and Capillarity on the Displacement of Oil by Water,” Prod. Mon. (20Aug.1956).

Ng, K. M.

A. C. Payatakes, K. M. Ng, R. W. Flumerfelt, “Oil Ganglion Dynamics During Immiscible Displacement: Model Formulation,” Am. Inst. Chem. Eng. J. 26, 430 (1980).
[CrossRef]

Parson, R. W.

R. W. Parson, “Microwave Attenuation—A Tool for Monitoring Saturation in Laboratory Flooding Experiments,” Soc. Pet. Eng. J. 11, 72 (1975).

Payatakes, A. C.

A. C. Payatakes, K. M. Ng, R. W. Flumerfelt, “Oil Ganglion Dynamics During Immiscible Displacement: Model Formulation,” Am. Inst. Chem. Eng. J. 26, 430 (1980).
[CrossRef]

Peters, E. J.

E. J. Peters, “Stability Theory and Fiscous Fingering in Porous Media,” Ph.D. thesis, University of Alberta, Edmonton (1979).

Picker, J.

M. R. Gambini, J. Picker, “Anger Camera Detector Theory and Design,” Nucl. Med. Inst. 2, 30 (1981).

Slobod, R. L.

R. L. Slobod, B. H. Caudle, “X-ray Shadowgraph Studies of Areal Sweepout Efficiencies,” Trans. AIME 195, 265 (1952).

T. F. Moore, R. L. Slobod, “The Effect of Viscosity and Capillarity on the Displacement of Oil by Water,” Prod. Mon. (20Aug.1956).

Spencer, J. L.

F. S. Castellana, J. L. Spencer, A. Cartolano, “Application of the Gamma Camera to Studies of Flow and Mixing in Reactor Vessels,” Ind. Eng. Chem. Fundam. 19, 222 (1980).
[CrossRef]

van der Poel, C.

R. L. Chuoke, P. van Meurs, C. van der Poel, “Instability of Slow Immiscible Viscous Liquid-Liquid Displacement in Permeable Media,” Trans. AIME 216, 188 (1959).

van Meurs, P.

R. L. Chuoke, P. van Meurs, C. van der Poel, “Instability of Slow Immiscible Viscous Liquid-Liquid Displacement in Permeable Media,” Trans. AIME 216, 188 (1959).

P. van Meurs, “Use of Transparent Three Dimensional Models for Studying the Mechanisms of Flow Processes in Oil Reservoirs,” Trans, AIME 210, 295 (1957).

Wang, S. Y.

S. Y. Wang, S. Ayral, C. C. Gryte, “Computer-Assisted Tomography for the Observation of Oil Displacement in Porous Media,” Soc. Pet. Eng. J. 53 (Feb.1984).

S. Y. Wang, S. Ayral, F. S. Castellana, Carl C. Gryte, “Reconstruction of Oil Saturation Distribution Histories During Immiscible Liquid Displacement by Computer Assisted Tomography,” Am. Inst. Chem. Eng. J. 30, 642 (1984).
[CrossRef]

S. Y. Wang, “Application of Computer-Assisted Tomography to Displacement in Porous Media,” Columbia University, New York (1983).

Wilkinson, D.

D. Wilkinson, J. F. Willemsen, “Invasion Percolation: a New Form of Percolation Theory,” J. Phys. A 16, 3365 (1983).
[CrossRef]

Willemsen, J. F.

D. Wilkinson, J. F. Willemsen, “Invasion Percolation: a New Form of Percolation Theory,” J. Phys. A 16, 3365 (1983).
[CrossRef]

Am. Inst. Chem. Eng. J. (2)

S. Y. Wang, S. Ayral, F. S. Castellana, Carl C. Gryte, “Reconstruction of Oil Saturation Distribution Histories During Immiscible Liquid Displacement by Computer Assisted Tomography,” Am. Inst. Chem. Eng. J. 30, 642 (1984).
[CrossRef]

A. C. Payatakes, K. M. Ng, R. W. Flumerfelt, “Oil Ganglion Dynamics During Immiscible Displacement: Model Formulation,” Am. Inst. Chem. Eng. J. 26, 430 (1980).
[CrossRef]

Ind. Eng. Chem. Fundam. (1)

F. S. Castellana, J. L. Spencer, A. Cartolano, “Application of the Gamma Camera to Studies of Flow and Mixing in Reactor Vessels,” Ind. Eng. Chem. Fundam. 19, 222 (1980).
[CrossRef]

Invest. Radiol. (1)

H. K. Genant, D. Boyd, “Quantitative Bone Mineral Analysis Using Dual Energy Computed Tomography,” Invest. Radiol. 12, 545 (1977).
[CrossRef] [PubMed]

J. Phys. A (1)

D. Wilkinson, J. F. Willemsen, “Invasion Percolation: a New Form of Percolation Theory,” J. Phys. A 16, 3365 (1983).
[CrossRef]

Nucl. Med. Inst. (1)

M. R. Gambini, J. Picker, “Anger Camera Detector Theory and Design,” Nucl. Med. Inst. 2, 30 (1981).

Soc. Pet. Eng. J. (2)

R. W. Parson, “Microwave Attenuation—A Tool for Monitoring Saturation in Laboratory Flooding Experiments,” Soc. Pet. Eng. J. 11, 72 (1975).

S. Y. Wang, S. Ayral, C. C. Gryte, “Computer-Assisted Tomography for the Observation of Oil Displacement in Porous Media,” Soc. Pet. Eng. J. 53 (Feb.1984).

Trans, AIME (1)

P. van Meurs, “Use of Transparent Three Dimensional Models for Studying the Mechanisms of Flow Processes in Oil Reservoirs,” Trans, AIME 210, 295 (1957).

Trans. AIME (3)

M. C. Leverett, “Flow of Oil-Water Mixtures Through Unconsolidated Sand,” Trans. AIME 132, 149 (1939).

R. L. Slobod, B. H. Caudle, “X-ray Shadowgraph Studies of Areal Sweepout Efficiencies,” Trans. AIME 195, 265 (1952).

R. L. Chuoke, P. van Meurs, C. van der Poel, “Instability of Slow Immiscible Viscous Liquid-Liquid Displacement in Permeable Media,” Trans. AIME 216, 188 (1959).

Other (3)

S. Y. Wang, “Application of Computer-Assisted Tomography to Displacement in Porous Media,” Columbia University, New York (1983).

T. F. Moore, R. L. Slobod, “The Effect of Viscosity and Capillarity on the Displacement of Oil by Water,” Prod. Mon. (20Aug.1956).

E. J. Peters, “Stability Theory and Fiscous Fingering in Porous Media,” Ph.D. thesis, University of Alberta, Edmonton (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Cross section of embedded square experimental core.

Fig. 2
Fig. 2

Computed tomography flow assembly.

Fig. 3
Fig. 3

Computed tomography image data: (A) attenuation numbers for core containing 1-M KI; (B) attenuation numbers for core containing oil; (C) attentuation numbers for experimental core (90-cm3/h displacement rate; 0.20 pore volumes injected; position 7 cm from injection point); (D) oil saturation image constructed from (A) to (C).

Fig. 4
Fig. 4

Area average oil saturation as a function of axial position along core. Displacement rate: ⊙ 19 cm3/h; ◬ 90 cm3/h; ⊡ 240 cm3/h. Measured core average residual oil saturation: ⊙0.432; ←◬ 0.332; ←⊡ 0.261 (indicated at arrow).

Fig. 5
Fig. 5

Berea sandstone phantom with cylindrical voids 0.64, 0.32, and 0.16 cm in diameter.

Fig. 6
Fig. 6

Oil-rich (white) and water-rich (shaded) regions for the cross section in Fig. 3(C) as a function of oil saturation threshold: (A) 0.40; (B) 0.50; (C) 0.60; (D) 0.70.

Fig. 7
Fig. 7

Observed viscous fingers as a function of displacement velocity at a position 7 cm from injection point: (A) displacement rate: 19 cm3/h; 0.155 pore volume injected; area average oil saturation (AOS) 0.628; (B) displacement rate: 90 cm3/h; 0.204 pore volume injected; AOS 0.654; (C) displacement rate: 240 cm3/h; 0.1051 pore volume injected; AOS 0.687.

Fig. 8
Fig. 8

Time evolution of oil saturation traverses at a position 3 cm from injection point (displacement rate: 19 cm3/h) at indicated injected pore volumes (pV): T1 0.034 pV (AOS 0.910); T2 0.05 pV (AOS 0.776); T3 0.151 pV (AOS 0.398); T4 0.177 pV (AOS 0.3533).

Fig. 9
Fig. 9

Time derivative of local oil saturation: traverse data at T2 and T3 as defined in Fig. 8.

Fig. 10
Fig. 10

Histogram of time derivative of local oil saturation over cross-sectional area defined in Figs. 8 and 9.

Fig. 11
Fig. 11

Residual oil saturation as a function of the displacement rate at a position 18 cm from the injection point: (a) oil saturation representation: (A) 19 cm3/h (AOS 0.597); (B) 90 cm3/h (AOS 0.440); (C) 240 cm3/h (AOS 0.231). (b) Oil-rich (white) and water-rich (shaded) residual oil saturation distribution from (a) for a threshold value 0.40.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

μ i j = ( 1 ϕ i j ) μ 1 + ϕ i j [ ( 1 X i j ) μ 2 + X i j μ 3 ] ,
X i j = μ i j μ A i j μ B i j μ A i j .

Metrics