Abstract

In many applications of computed tomography, it may not be possible to acquire projection data at all angles, as required by the most commonly used algorithm of convolution backprojection. In such a limited-data situation, we face an ill-posed problem in attempting to reconstruct an image from an incomplete set of projections. Many techniques have been proposed to tackle this situation, employing diverse theories such as signal recovery, image restoration, constrained deconvolution, and constrained optimization, as well as novel schemes such as iterative object-dependent algorithms incorporating a priori knowledge and use of multispectral radiation. We present an overview of such techniques and offer a challenge to all readers to reconstruct images from a set of limited-view data provided here.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription