Abstract

Nuclear magnetic resonance imaging (NMRI) is a powerful imaging modality having a range of important applications to medicine and industry. The basic principles of NMRI are reviewed in this paper. Particular emphasis is placed on developing the conceptual and mathematical basis for understanding three fundamental NMRI concepts, namely, spin density projection, phase encoding, and selective irradiation. The question of resolution in NMR imaging is discussed, and a brief presentation of chemical shift, spin relaxation time, and fluid flow velocity imaging is given.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, H. C. Torrey, R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69, 37 (1946).
    [CrossRef]
  2. F. Bloch, W. W. Hansen, M. Packard, “Nuclear Induction,” Phys. Rev. 69, 127 (1946).
    [CrossRef]
  3. E. D. Becker, High Resolution NMR: Theory and Chemical Applications (Academic, New York, 1980).
  4. P. C. Lauterbur, “Image Formation by Induced Local Interactions. Examples Employing Nuclear Magnetic Resonance,” Nature London 242, 190 (1973).
    [CrossRef]
  5. W. P. Rothwell, D. R. Holecek, J. A. Kershaw, “NMR Imaging: Study of Fluid Absorption by Polymer Composites,” J. Polym. Sci. Polym. Lett. Ed. 22, 241 (1984).
    [CrossRef]
  6. W. P. Rothwell, P. P. Gentempo, “Nonmedical Applications of NMR Imaging,” Bruker Reports 1, 46 (1985).
  7. W. P. Rothwell, H. J. Vinegar, “Petrophysical Applications of NMR Imaging,” Appl. Opt. 24, this issue (1985).
    [CrossRef] [PubMed]
  8. P. Mansfield, P. C. Morris, “NMR Imaging in Biomedicine,” in Advances in Magnetic Resonance, Suppl. 2, J. S. Waugh, Ed. (Academic, New York, 1982).
  9. C. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin, 1978).
  10. U. Haeberlen, “High Resolution NMR in Solids: Selective Averaging,” in Advances in Magnetic Resonance, Suppl. 1, J. S. Waugh, Ed. (Academic, New York, 1976).
  11. P. A. Bottomly, “NMR Imaging Techniques and Applications: A Review,” Rev. Sci. Instrum. 53, 1319 (1982).
    [CrossRef]
  12. E. R. Andrew, “NMR Imaging,” Acc. Chem. Res. 16, 114 (1983).
    [CrossRef]
  13. K. Ohno, “Application of ESR Imaging to a Continuous Flow Method for Study of Kinetics of Short-Lived Radicals,” J. Magn. Reson. 49, 56 (1982); T. Herrling, N. Klimes, W. Karthe, U. Ewert, B. Ebert, “EPR Zeugmatography with Modulated Magnetic Filled Gradient,” J. Magn. Reson. 49, 203 (1982); K. Ohno, “ESR Imaging: A Deconvolution Method for Hyperfine Patterns,” J. Magn. Reson. 50, 145 (1982).
  14. I. L. Pykett, B.R. Rosen, “Nuclear Magnetic Resonance: In Vivo Proton Chemical Shift Imaging,” Radiology 149, 197 (1983).
    [PubMed]
  15. J. R. Singer, L. E. Crooks, “Nuclear Magnetic Resonance Blood Flow Measurements in the Human Brain,” Science London 221, 654 (1983).
  16. D. J. Bryant, J. A. Payne, D. N. Firmin, D. B. Longmore, “Measurement of Flow with NMR Imaging Using a Gradient Pulse and Phase Difference Technique,” J. Comput. Assist. Tomogr. 8, 588 (1984).
    [CrossRef] [PubMed]
  17. V. Waluch, W. G. Bradley, “NMR Even Echo Rephasing in Slow Laminar Flow,” J. Comput. Assist. Tomogr. 8, 594 (1984).
    [CrossRef] [PubMed]
  18. P. Brunner, R. R. Ernst, “Sensitivity and Performance Time in NMR Imaging,” J. Magn. Reson. 33, 83 (1979).
  19. W. S. Hinshaw, “Spin Mapping—Application of Moving Gradients to NMR,” Phys. Lett. A 48, 87 (1974); W. S. Hinshaw, “Image-Formation by Nuclear Magnetic-Resonance—Sensitive-Point Method,” J. Appl. Phys. 47, 3709 (1976).
    [CrossRef]
  20. R. Damadian, M. Goldsmith, L. Minkoff, “NMR in Cancer,” Physiol. Chem. Phys. 9, 97 (1977); R. Damadian, L. Minkoff, M. Goldsmith, J. A. Koutcher, “Field-Focusing Nuclear Magnetic Resonance (FONAR). Formation of Chemical Scans in Man,” Naturwissenschaften 65, 250 (1978).
    [CrossRef] [PubMed]
  21. W. S. Hinshaw, P. A. Bottomley, G. N. Holland, “Radiographic Thin-Section Image of Human Wrist by Nuclear Magnetic-Resonance,” Nature London 270, 722 (1977); W. S. Hinshaw, E. R. Andrew, P. A. Bottomley, G. N. Holland, W. S. Moore, B. S. Worthington, “Display of Cross Sectional Anatomy by Nuclear Magnetic Resonance Imaging,” and “In Vivo Study of the Forearm and Hand by Thin Section NMR Imaging,” Br. J. Radiol. 51, 273 (1978); Br. J. Radiol. 52, 36 (1979); E. R. Andrew, P. A. Bottomley, W. S. Hinshaw, G. N. Holland, W. S. Moore, C. Simaroj, “NMR Images by Multiple Sensitive Point Method—Application to Larger Biological Systems,” Phys. Med. Biol. 22, 971 (1977).
    [CrossRef] [PubMed]
  22. A. N. Garroway, P. K. Grannell, P. Mansfield, “Image Formation in NMR by a Selective Irradiative Process,” J. Phys. C 7, L457 (1974).
    [CrossRef]
  23. P. Mansfield, A. A. Maudsley, T. Baines, “Fast Scan Proton Density Imaging by NMR,” J. Phys. E 9, 271 (1976); P. Mansfield, A. A. Maudsley, “Medical Imaging by NMR,” J. Br. Radiol. 50, 188 (1977).
    [CrossRef]
  24. A. A. Maudsley, “Multiple-Line-Scanning Spin Density Imaging,” J. Magn. Reson. 41, 112 (1980).
  25. P. Mansfield, “Multi-Planar Image Formation using NMR Spin Echoes,” J. Phys. C 10, L55 (1977); P. Mansfield, I. L. Pykett, “Biological and Medical Imaging by NMR,” J. Magn. Reson. 29, 355 (1978).
    [CrossRef]
  26. P. Mansfield, A. A. Maudsley, “Planar Spin Imaging by NMR,” J. Phys. C 9, L409 (1976).
    [CrossRef]
  27. P. Mansfield, A. A. Maudsley, “Planar Spin Imaging by NMR,” J. Magn. Reson. 27, 101 (1977).
  28. A. Kumar, I. Welti, R. R. Ernst, “Imaging of Macroscopic Objects by NMR Fourier Zeugmatography,” Naturwissenshaftn 62, 34 (1975); A. Kumar, D. Welti, R. R. Ernst, “NMR Fourier Zeugmatography,” J. Magn. Reson. 18, 69 (1975).
    [CrossRef]
  29. W. A. Edelstein, J. M. S. Hutchison, G. Johnson, T. Red-path, “Spin Warp NMR Imaging and Applications to Human Whole-Body Imaging,” Phys Med. Biol. 25, 751 (1980).
    [CrossRef] [PubMed]
  30. D. I. Hoult, “Rotating Frame Zeugmatography,” J. Magn. Reson. 33, 183 (1979).
  31. P. C. Lauterbur, C.-M. Lai, “Zeugmatography by Reconstruction from Projections,” IEEE Trans. 27, 1227 (1980); C.-M. Lai, P. C. Lauterbur, “A Gradient Control Device for Complete Three-Dimensional Nuclear Magnetic Resonance Zeugmatographic Imaging,” J. Phys. E 13, 747 (1980); C.-M. Lai, “True Three-Dimensional Nuclear Magnetic Resonance Imaging by Fourier Reconstruction Zeugmatography,” J. Appl. Phys. 52, 1141 (1981).
    [CrossRef]
  32. A. A. Maudsley, S. K. Hilal, W. H. Perman, H. E. Simon, “Spatially Resolved High Resolution Spectroscopy by Four- Dimensional NMR,” J. Magn. Reson. 51, 147 (1983).
  33. A. Bax, A. F. Mehlkopf, J. Smidt, “Absorption Spectra From Phase-Modulated Spin Echoes,” J. Magn. Reson. 35, 373 (1979).
  34. L. E. Crooks, “Recent Developments in Nuclear Magnetic-Resonance Imaging and Flow Measurements,” IEEE Trans. Nucl. Sci. NS-31, 1006 (1984).
    [CrossRef]
  35. R. J. Sutherland, J. M. S. Hutchison, “Three-Dimensional NMR Imaging Using Selective Excitation,” J. Phys. E 11, 79 (1978).
    [CrossRef]
  36. L. E. Crooks, J. C. Hoenninger, M. Arakawa, “Method and Apparatus for Rapid NMR Imaging of Nuclear Densities Within an Object,” U.S. Patent4,318,043 (1982), “Method and Apparatus for Mapping Lines of Nuclear Density Within an Object using Nuclear Magnetic Resonance,” U.S. Patent4,297,637 (1981).
  37. R. J. Ordidge, private communication.
  38. P. Mansfield, P. K. Grannell, “NMR Diffraction in Solids,” J. Phys. C. 6, L422 (1973); P. Mansfield, P. K. Grannell, “Diffraction and Microscopy in Solids and Liquids by NMR,” Phys. Rev. 12, 3618 (1975).
    [CrossRef]
  39. R. A. Wind, C. S. Yannoni, “Selective Spin Imaging in Solids,” J. Magn. Reson. 36, 269 (1979).
  40. B. H. Suits, D. White, “NMR Imaging in Solids,” Solid State Commun. 50, 291 (1984).
    [CrossRef]
  41. A. N. Garroway, J. Baum, M. G. Munowitz, A. Pines, “NMR Imaging in Solids by Multiple-Quantum Resonance,” J. Magn. Reson. 60, 337 (1984).
  42. S. Emid, J. H. N. Creyghton, “High-Resolution NMR Imaging in Solids,” Physica B&C, 128, 81 (1985).
  43. I. R. Young et al., “Initial Clinical Evaluation of a Whole-Body Nuclear Magnetic-Resonance (NMR) Tomograph,” J. Comput. Assist. Tomogr. 6, 1 (1982).
    [CrossRef] [PubMed]
  44. W. A. Edelstein, P. A. Bottomley, H. R. Hart, L. S. Smith, “Signal, Noise, and Contrast in Nuclear Magnetic Resonance (NMR) Imaging,” J. Comput. Assist. Tomogr. 7, 391 (1983).
    [CrossRef] [PubMed]
  45. Abstracts, Third Annual Meeting of the Society of Magnetic Resonance in Medicine, 13–17 Aug., 1984, New York.
  46. E. Feig, F. Greenleaf, “Narrow-Band Chemical-Shift Imaging,” Appl. Opt. 24, 3977 (1985).
    [CrossRef] [PubMed]
  47. E. O. Stejskal, J. E. Tanner, “Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient,” J. Chem. Phys. 42, 288 (1965).
    [CrossRef]

1985 (4)

W. P. Rothwell, P. P. Gentempo, “Nonmedical Applications of NMR Imaging,” Bruker Reports 1, 46 (1985).

W. P. Rothwell, H. J. Vinegar, “Petrophysical Applications of NMR Imaging,” Appl. Opt. 24, this issue (1985).
[CrossRef] [PubMed]

S. Emid, J. H. N. Creyghton, “High-Resolution NMR Imaging in Solids,” Physica B&C, 128, 81 (1985).

E. Feig, F. Greenleaf, “Narrow-Band Chemical-Shift Imaging,” Appl. Opt. 24, 3977 (1985).
[CrossRef] [PubMed]

1984 (6)

B. H. Suits, D. White, “NMR Imaging in Solids,” Solid State Commun. 50, 291 (1984).
[CrossRef]

A. N. Garroway, J. Baum, M. G. Munowitz, A. Pines, “NMR Imaging in Solids by Multiple-Quantum Resonance,” J. Magn. Reson. 60, 337 (1984).

L. E. Crooks, “Recent Developments in Nuclear Magnetic-Resonance Imaging and Flow Measurements,” IEEE Trans. Nucl. Sci. NS-31, 1006 (1984).
[CrossRef]

W. P. Rothwell, D. R. Holecek, J. A. Kershaw, “NMR Imaging: Study of Fluid Absorption by Polymer Composites,” J. Polym. Sci. Polym. Lett. Ed. 22, 241 (1984).
[CrossRef]

D. J. Bryant, J. A. Payne, D. N. Firmin, D. B. Longmore, “Measurement of Flow with NMR Imaging Using a Gradient Pulse and Phase Difference Technique,” J. Comput. Assist. Tomogr. 8, 588 (1984).
[CrossRef] [PubMed]

V. Waluch, W. G. Bradley, “NMR Even Echo Rephasing in Slow Laminar Flow,” J. Comput. Assist. Tomogr. 8, 594 (1984).
[CrossRef] [PubMed]

1983 (5)

I. L. Pykett, B.R. Rosen, “Nuclear Magnetic Resonance: In Vivo Proton Chemical Shift Imaging,” Radiology 149, 197 (1983).
[PubMed]

J. R. Singer, L. E. Crooks, “Nuclear Magnetic Resonance Blood Flow Measurements in the Human Brain,” Science London 221, 654 (1983).

E. R. Andrew, “NMR Imaging,” Acc. Chem. Res. 16, 114 (1983).
[CrossRef]

A. A. Maudsley, S. K. Hilal, W. H. Perman, H. E. Simon, “Spatially Resolved High Resolution Spectroscopy by Four- Dimensional NMR,” J. Magn. Reson. 51, 147 (1983).

W. A. Edelstein, P. A. Bottomley, H. R. Hart, L. S. Smith, “Signal, Noise, and Contrast in Nuclear Magnetic Resonance (NMR) Imaging,” J. Comput. Assist. Tomogr. 7, 391 (1983).
[CrossRef] [PubMed]

1982 (3)

I. R. Young et al., “Initial Clinical Evaluation of a Whole-Body Nuclear Magnetic-Resonance (NMR) Tomograph,” J. Comput. Assist. Tomogr. 6, 1 (1982).
[CrossRef] [PubMed]

K. Ohno, “Application of ESR Imaging to a Continuous Flow Method for Study of Kinetics of Short-Lived Radicals,” J. Magn. Reson. 49, 56 (1982); T. Herrling, N. Klimes, W. Karthe, U. Ewert, B. Ebert, “EPR Zeugmatography with Modulated Magnetic Filled Gradient,” J. Magn. Reson. 49, 203 (1982); K. Ohno, “ESR Imaging: A Deconvolution Method for Hyperfine Patterns,” J. Magn. Reson. 50, 145 (1982).

P. A. Bottomly, “NMR Imaging Techniques and Applications: A Review,” Rev. Sci. Instrum. 53, 1319 (1982).
[CrossRef]

1980 (3)

A. A. Maudsley, “Multiple-Line-Scanning Spin Density Imaging,” J. Magn. Reson. 41, 112 (1980).

W. A. Edelstein, J. M. S. Hutchison, G. Johnson, T. Red-path, “Spin Warp NMR Imaging and Applications to Human Whole-Body Imaging,” Phys Med. Biol. 25, 751 (1980).
[CrossRef] [PubMed]

P. C. Lauterbur, C.-M. Lai, “Zeugmatography by Reconstruction from Projections,” IEEE Trans. 27, 1227 (1980); C.-M. Lai, P. C. Lauterbur, “A Gradient Control Device for Complete Three-Dimensional Nuclear Magnetic Resonance Zeugmatographic Imaging,” J. Phys. E 13, 747 (1980); C.-M. Lai, “True Three-Dimensional Nuclear Magnetic Resonance Imaging by Fourier Reconstruction Zeugmatography,” J. Appl. Phys. 52, 1141 (1981).
[CrossRef]

1979 (4)

D. I. Hoult, “Rotating Frame Zeugmatography,” J. Magn. Reson. 33, 183 (1979).

A. Bax, A. F. Mehlkopf, J. Smidt, “Absorption Spectra From Phase-Modulated Spin Echoes,” J. Magn. Reson. 35, 373 (1979).

P. Brunner, R. R. Ernst, “Sensitivity and Performance Time in NMR Imaging,” J. Magn. Reson. 33, 83 (1979).

R. A. Wind, C. S. Yannoni, “Selective Spin Imaging in Solids,” J. Magn. Reson. 36, 269 (1979).

1978 (1)

R. J. Sutherland, J. M. S. Hutchison, “Three-Dimensional NMR Imaging Using Selective Excitation,” J. Phys. E 11, 79 (1978).
[CrossRef]

1977 (4)

P. Mansfield, “Multi-Planar Image Formation using NMR Spin Echoes,” J. Phys. C 10, L55 (1977); P. Mansfield, I. L. Pykett, “Biological and Medical Imaging by NMR,” J. Magn. Reson. 29, 355 (1978).
[CrossRef]

P. Mansfield, A. A. Maudsley, “Planar Spin Imaging by NMR,” J. Magn. Reson. 27, 101 (1977).

R. Damadian, M. Goldsmith, L. Minkoff, “NMR in Cancer,” Physiol. Chem. Phys. 9, 97 (1977); R. Damadian, L. Minkoff, M. Goldsmith, J. A. Koutcher, “Field-Focusing Nuclear Magnetic Resonance (FONAR). Formation of Chemical Scans in Man,” Naturwissenschaften 65, 250 (1978).
[CrossRef] [PubMed]

W. S. Hinshaw, P. A. Bottomley, G. N. Holland, “Radiographic Thin-Section Image of Human Wrist by Nuclear Magnetic-Resonance,” Nature London 270, 722 (1977); W. S. Hinshaw, E. R. Andrew, P. A. Bottomley, G. N. Holland, W. S. Moore, B. S. Worthington, “Display of Cross Sectional Anatomy by Nuclear Magnetic Resonance Imaging,” and “In Vivo Study of the Forearm and Hand by Thin Section NMR Imaging,” Br. J. Radiol. 51, 273 (1978); Br. J. Radiol. 52, 36 (1979); E. R. Andrew, P. A. Bottomley, W. S. Hinshaw, G. N. Holland, W. S. Moore, C. Simaroj, “NMR Images by Multiple Sensitive Point Method—Application to Larger Biological Systems,” Phys. Med. Biol. 22, 971 (1977).
[CrossRef] [PubMed]

1976 (2)

P. Mansfield, A. A. Maudsley, “Planar Spin Imaging by NMR,” J. Phys. C 9, L409 (1976).
[CrossRef]

P. Mansfield, A. A. Maudsley, T. Baines, “Fast Scan Proton Density Imaging by NMR,” J. Phys. E 9, 271 (1976); P. Mansfield, A. A. Maudsley, “Medical Imaging by NMR,” J. Br. Radiol. 50, 188 (1977).
[CrossRef]

1975 (1)

A. Kumar, I. Welti, R. R. Ernst, “Imaging of Macroscopic Objects by NMR Fourier Zeugmatography,” Naturwissenshaftn 62, 34 (1975); A. Kumar, D. Welti, R. R. Ernst, “NMR Fourier Zeugmatography,” J. Magn. Reson. 18, 69 (1975).
[CrossRef]

1974 (2)

A. N. Garroway, P. K. Grannell, P. Mansfield, “Image Formation in NMR by a Selective Irradiative Process,” J. Phys. C 7, L457 (1974).
[CrossRef]

W. S. Hinshaw, “Spin Mapping—Application of Moving Gradients to NMR,” Phys. Lett. A 48, 87 (1974); W. S. Hinshaw, “Image-Formation by Nuclear Magnetic-Resonance—Sensitive-Point Method,” J. Appl. Phys. 47, 3709 (1976).
[CrossRef]

1973 (2)

P. C. Lauterbur, “Image Formation by Induced Local Interactions. Examples Employing Nuclear Magnetic Resonance,” Nature London 242, 190 (1973).
[CrossRef]

P. Mansfield, P. K. Grannell, “NMR Diffraction in Solids,” J. Phys. C. 6, L422 (1973); P. Mansfield, P. K. Grannell, “Diffraction and Microscopy in Solids and Liquids by NMR,” Phys. Rev. 12, 3618 (1975).
[CrossRef]

1965 (1)

E. O. Stejskal, J. E. Tanner, “Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient,” J. Chem. Phys. 42, 288 (1965).
[CrossRef]

1946 (2)

E. M. Purcell, H. C. Torrey, R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69, 37 (1946).
[CrossRef]

F. Bloch, W. W. Hansen, M. Packard, “Nuclear Induction,” Phys. Rev. 69, 127 (1946).
[CrossRef]

Andrew, E. R.

E. R. Andrew, “NMR Imaging,” Acc. Chem. Res. 16, 114 (1983).
[CrossRef]

Arakawa, M.

L. E. Crooks, J. C. Hoenninger, M. Arakawa, “Method and Apparatus for Rapid NMR Imaging of Nuclear Densities Within an Object,” U.S. Patent4,318,043 (1982), “Method and Apparatus for Mapping Lines of Nuclear Density Within an Object using Nuclear Magnetic Resonance,” U.S. Patent4,297,637 (1981).

Baines, T.

P. Mansfield, A. A. Maudsley, T. Baines, “Fast Scan Proton Density Imaging by NMR,” J. Phys. E 9, 271 (1976); P. Mansfield, A. A. Maudsley, “Medical Imaging by NMR,” J. Br. Radiol. 50, 188 (1977).
[CrossRef]

Baum, J.

A. N. Garroway, J. Baum, M. G. Munowitz, A. Pines, “NMR Imaging in Solids by Multiple-Quantum Resonance,” J. Magn. Reson. 60, 337 (1984).

Bax, A.

A. Bax, A. F. Mehlkopf, J. Smidt, “Absorption Spectra From Phase-Modulated Spin Echoes,” J. Magn. Reson. 35, 373 (1979).

Becker, E. D.

E. D. Becker, High Resolution NMR: Theory and Chemical Applications (Academic, New York, 1980).

Bloch, F.

F. Bloch, W. W. Hansen, M. Packard, “Nuclear Induction,” Phys. Rev. 69, 127 (1946).
[CrossRef]

Bottomley, P. A.

W. A. Edelstein, P. A. Bottomley, H. R. Hart, L. S. Smith, “Signal, Noise, and Contrast in Nuclear Magnetic Resonance (NMR) Imaging,” J. Comput. Assist. Tomogr. 7, 391 (1983).
[CrossRef] [PubMed]

W. S. Hinshaw, P. A. Bottomley, G. N. Holland, “Radiographic Thin-Section Image of Human Wrist by Nuclear Magnetic-Resonance,” Nature London 270, 722 (1977); W. S. Hinshaw, E. R. Andrew, P. A. Bottomley, G. N. Holland, W. S. Moore, B. S. Worthington, “Display of Cross Sectional Anatomy by Nuclear Magnetic Resonance Imaging,” and “In Vivo Study of the Forearm and Hand by Thin Section NMR Imaging,” Br. J. Radiol. 51, 273 (1978); Br. J. Radiol. 52, 36 (1979); E. R. Andrew, P. A. Bottomley, W. S. Hinshaw, G. N. Holland, W. S. Moore, C. Simaroj, “NMR Images by Multiple Sensitive Point Method—Application to Larger Biological Systems,” Phys. Med. Biol. 22, 971 (1977).
[CrossRef] [PubMed]

Bottomly, P. A.

P. A. Bottomly, “NMR Imaging Techniques and Applications: A Review,” Rev. Sci. Instrum. 53, 1319 (1982).
[CrossRef]

Bradley, W. G.

V. Waluch, W. G. Bradley, “NMR Even Echo Rephasing in Slow Laminar Flow,” J. Comput. Assist. Tomogr. 8, 594 (1984).
[CrossRef] [PubMed]

Brunner, P.

P. Brunner, R. R. Ernst, “Sensitivity and Performance Time in NMR Imaging,” J. Magn. Reson. 33, 83 (1979).

Bryant, D. J.

D. J. Bryant, J. A. Payne, D. N. Firmin, D. B. Longmore, “Measurement of Flow with NMR Imaging Using a Gradient Pulse and Phase Difference Technique,” J. Comput. Assist. Tomogr. 8, 588 (1984).
[CrossRef] [PubMed]

Creyghton, J. H. N.

S. Emid, J. H. N. Creyghton, “High-Resolution NMR Imaging in Solids,” Physica B&C, 128, 81 (1985).

Crooks, L. E.

L. E. Crooks, “Recent Developments in Nuclear Magnetic-Resonance Imaging and Flow Measurements,” IEEE Trans. Nucl. Sci. NS-31, 1006 (1984).
[CrossRef]

J. R. Singer, L. E. Crooks, “Nuclear Magnetic Resonance Blood Flow Measurements in the Human Brain,” Science London 221, 654 (1983).

L. E. Crooks, J. C. Hoenninger, M. Arakawa, “Method and Apparatus for Rapid NMR Imaging of Nuclear Densities Within an Object,” U.S. Patent4,318,043 (1982), “Method and Apparatus for Mapping Lines of Nuclear Density Within an Object using Nuclear Magnetic Resonance,” U.S. Patent4,297,637 (1981).

Damadian, R.

R. Damadian, M. Goldsmith, L. Minkoff, “NMR in Cancer,” Physiol. Chem. Phys. 9, 97 (1977); R. Damadian, L. Minkoff, M. Goldsmith, J. A. Koutcher, “Field-Focusing Nuclear Magnetic Resonance (FONAR). Formation of Chemical Scans in Man,” Naturwissenschaften 65, 250 (1978).
[CrossRef] [PubMed]

Edelstein, W. A.

W. A. Edelstein, P. A. Bottomley, H. R. Hart, L. S. Smith, “Signal, Noise, and Contrast in Nuclear Magnetic Resonance (NMR) Imaging,” J. Comput. Assist. Tomogr. 7, 391 (1983).
[CrossRef] [PubMed]

W. A. Edelstein, J. M. S. Hutchison, G. Johnson, T. Red-path, “Spin Warp NMR Imaging and Applications to Human Whole-Body Imaging,” Phys Med. Biol. 25, 751 (1980).
[CrossRef] [PubMed]

Emid, S.

S. Emid, J. H. N. Creyghton, “High-Resolution NMR Imaging in Solids,” Physica B&C, 128, 81 (1985).

Ernst, R. R.

P. Brunner, R. R. Ernst, “Sensitivity and Performance Time in NMR Imaging,” J. Magn. Reson. 33, 83 (1979).

A. Kumar, I. Welti, R. R. Ernst, “Imaging of Macroscopic Objects by NMR Fourier Zeugmatography,” Naturwissenshaftn 62, 34 (1975); A. Kumar, D. Welti, R. R. Ernst, “NMR Fourier Zeugmatography,” J. Magn. Reson. 18, 69 (1975).
[CrossRef]

Feig, E.

Firmin, D. N.

D. J. Bryant, J. A. Payne, D. N. Firmin, D. B. Longmore, “Measurement of Flow with NMR Imaging Using a Gradient Pulse and Phase Difference Technique,” J. Comput. Assist. Tomogr. 8, 588 (1984).
[CrossRef] [PubMed]

Garroway, A. N.

A. N. Garroway, J. Baum, M. G. Munowitz, A. Pines, “NMR Imaging in Solids by Multiple-Quantum Resonance,” J. Magn. Reson. 60, 337 (1984).

A. N. Garroway, P. K. Grannell, P. Mansfield, “Image Formation in NMR by a Selective Irradiative Process,” J. Phys. C 7, L457 (1974).
[CrossRef]

Gentempo, P. P.

W. P. Rothwell, P. P. Gentempo, “Nonmedical Applications of NMR Imaging,” Bruker Reports 1, 46 (1985).

Goldsmith, M.

R. Damadian, M. Goldsmith, L. Minkoff, “NMR in Cancer,” Physiol. Chem. Phys. 9, 97 (1977); R. Damadian, L. Minkoff, M. Goldsmith, J. A. Koutcher, “Field-Focusing Nuclear Magnetic Resonance (FONAR). Formation of Chemical Scans in Man,” Naturwissenschaften 65, 250 (1978).
[CrossRef] [PubMed]

Grannell, P. K.

A. N. Garroway, P. K. Grannell, P. Mansfield, “Image Formation in NMR by a Selective Irradiative Process,” J. Phys. C 7, L457 (1974).
[CrossRef]

P. Mansfield, P. K. Grannell, “NMR Diffraction in Solids,” J. Phys. C. 6, L422 (1973); P. Mansfield, P. K. Grannell, “Diffraction and Microscopy in Solids and Liquids by NMR,” Phys. Rev. 12, 3618 (1975).
[CrossRef]

Greenleaf, F.

Haeberlen, U.

U. Haeberlen, “High Resolution NMR in Solids: Selective Averaging,” in Advances in Magnetic Resonance, Suppl. 1, J. S. Waugh, Ed. (Academic, New York, 1976).

Hansen, W. W.

F. Bloch, W. W. Hansen, M. Packard, “Nuclear Induction,” Phys. Rev. 69, 127 (1946).
[CrossRef]

Hart, H. R.

W. A. Edelstein, P. A. Bottomley, H. R. Hart, L. S. Smith, “Signal, Noise, and Contrast in Nuclear Magnetic Resonance (NMR) Imaging,” J. Comput. Assist. Tomogr. 7, 391 (1983).
[CrossRef] [PubMed]

Hilal, S. K.

A. A. Maudsley, S. K. Hilal, W. H. Perman, H. E. Simon, “Spatially Resolved High Resolution Spectroscopy by Four- Dimensional NMR,” J. Magn. Reson. 51, 147 (1983).

Hinshaw, W. S.

W. S. Hinshaw, P. A. Bottomley, G. N. Holland, “Radiographic Thin-Section Image of Human Wrist by Nuclear Magnetic-Resonance,” Nature London 270, 722 (1977); W. S. Hinshaw, E. R. Andrew, P. A. Bottomley, G. N. Holland, W. S. Moore, B. S. Worthington, “Display of Cross Sectional Anatomy by Nuclear Magnetic Resonance Imaging,” and “In Vivo Study of the Forearm and Hand by Thin Section NMR Imaging,” Br. J. Radiol. 51, 273 (1978); Br. J. Radiol. 52, 36 (1979); E. R. Andrew, P. A. Bottomley, W. S. Hinshaw, G. N. Holland, W. S. Moore, C. Simaroj, “NMR Images by Multiple Sensitive Point Method—Application to Larger Biological Systems,” Phys. Med. Biol. 22, 971 (1977).
[CrossRef] [PubMed]

W. S. Hinshaw, “Spin Mapping—Application of Moving Gradients to NMR,” Phys. Lett. A 48, 87 (1974); W. S. Hinshaw, “Image-Formation by Nuclear Magnetic-Resonance—Sensitive-Point Method,” J. Appl. Phys. 47, 3709 (1976).
[CrossRef]

Hoenninger, J. C.

L. E. Crooks, J. C. Hoenninger, M. Arakawa, “Method and Apparatus for Rapid NMR Imaging of Nuclear Densities Within an Object,” U.S. Patent4,318,043 (1982), “Method and Apparatus for Mapping Lines of Nuclear Density Within an Object using Nuclear Magnetic Resonance,” U.S. Patent4,297,637 (1981).

Holecek, D. R.

W. P. Rothwell, D. R. Holecek, J. A. Kershaw, “NMR Imaging: Study of Fluid Absorption by Polymer Composites,” J. Polym. Sci. Polym. Lett. Ed. 22, 241 (1984).
[CrossRef]

Holland, G. N.

W. S. Hinshaw, P. A. Bottomley, G. N. Holland, “Radiographic Thin-Section Image of Human Wrist by Nuclear Magnetic-Resonance,” Nature London 270, 722 (1977); W. S. Hinshaw, E. R. Andrew, P. A. Bottomley, G. N. Holland, W. S. Moore, B. S. Worthington, “Display of Cross Sectional Anatomy by Nuclear Magnetic Resonance Imaging,” and “In Vivo Study of the Forearm and Hand by Thin Section NMR Imaging,” Br. J. Radiol. 51, 273 (1978); Br. J. Radiol. 52, 36 (1979); E. R. Andrew, P. A. Bottomley, W. S. Hinshaw, G. N. Holland, W. S. Moore, C. Simaroj, “NMR Images by Multiple Sensitive Point Method—Application to Larger Biological Systems,” Phys. Med. Biol. 22, 971 (1977).
[CrossRef] [PubMed]

Hoult, D. I.

D. I. Hoult, “Rotating Frame Zeugmatography,” J. Magn. Reson. 33, 183 (1979).

Hutchison, J. M. S.

W. A. Edelstein, J. M. S. Hutchison, G. Johnson, T. Red-path, “Spin Warp NMR Imaging and Applications to Human Whole-Body Imaging,” Phys Med. Biol. 25, 751 (1980).
[CrossRef] [PubMed]

R. J. Sutherland, J. M. S. Hutchison, “Three-Dimensional NMR Imaging Using Selective Excitation,” J. Phys. E 11, 79 (1978).
[CrossRef]

Johnson, G.

W. A. Edelstein, J. M. S. Hutchison, G. Johnson, T. Red-path, “Spin Warp NMR Imaging and Applications to Human Whole-Body Imaging,” Phys Med. Biol. 25, 751 (1980).
[CrossRef] [PubMed]

Kershaw, J. A.

W. P. Rothwell, D. R. Holecek, J. A. Kershaw, “NMR Imaging: Study of Fluid Absorption by Polymer Composites,” J. Polym. Sci. Polym. Lett. Ed. 22, 241 (1984).
[CrossRef]

Kumar, A.

A. Kumar, I. Welti, R. R. Ernst, “Imaging of Macroscopic Objects by NMR Fourier Zeugmatography,” Naturwissenshaftn 62, 34 (1975); A. Kumar, D. Welti, R. R. Ernst, “NMR Fourier Zeugmatography,” J. Magn. Reson. 18, 69 (1975).
[CrossRef]

Lai, C.-M.

P. C. Lauterbur, C.-M. Lai, “Zeugmatography by Reconstruction from Projections,” IEEE Trans. 27, 1227 (1980); C.-M. Lai, P. C. Lauterbur, “A Gradient Control Device for Complete Three-Dimensional Nuclear Magnetic Resonance Zeugmatographic Imaging,” J. Phys. E 13, 747 (1980); C.-M. Lai, “True Three-Dimensional Nuclear Magnetic Resonance Imaging by Fourier Reconstruction Zeugmatography,” J. Appl. Phys. 52, 1141 (1981).
[CrossRef]

Lauterbur, P. C.

P. C. Lauterbur, C.-M. Lai, “Zeugmatography by Reconstruction from Projections,” IEEE Trans. 27, 1227 (1980); C.-M. Lai, P. C. Lauterbur, “A Gradient Control Device for Complete Three-Dimensional Nuclear Magnetic Resonance Zeugmatographic Imaging,” J. Phys. E 13, 747 (1980); C.-M. Lai, “True Three-Dimensional Nuclear Magnetic Resonance Imaging by Fourier Reconstruction Zeugmatography,” J. Appl. Phys. 52, 1141 (1981).
[CrossRef]

P. C. Lauterbur, “Image Formation by Induced Local Interactions. Examples Employing Nuclear Magnetic Resonance,” Nature London 242, 190 (1973).
[CrossRef]

Longmore, D. B.

D. J. Bryant, J. A. Payne, D. N. Firmin, D. B. Longmore, “Measurement of Flow with NMR Imaging Using a Gradient Pulse and Phase Difference Technique,” J. Comput. Assist. Tomogr. 8, 588 (1984).
[CrossRef] [PubMed]

Mansfield, P.

P. Mansfield, A. A. Maudsley, “Planar Spin Imaging by NMR,” J. Magn. Reson. 27, 101 (1977).

P. Mansfield, “Multi-Planar Image Formation using NMR Spin Echoes,” J. Phys. C 10, L55 (1977); P. Mansfield, I. L. Pykett, “Biological and Medical Imaging by NMR,” J. Magn. Reson. 29, 355 (1978).
[CrossRef]

P. Mansfield, A. A. Maudsley, “Planar Spin Imaging by NMR,” J. Phys. C 9, L409 (1976).
[CrossRef]

P. Mansfield, A. A. Maudsley, T. Baines, “Fast Scan Proton Density Imaging by NMR,” J. Phys. E 9, 271 (1976); P. Mansfield, A. A. Maudsley, “Medical Imaging by NMR,” J. Br. Radiol. 50, 188 (1977).
[CrossRef]

A. N. Garroway, P. K. Grannell, P. Mansfield, “Image Formation in NMR by a Selective Irradiative Process,” J. Phys. C 7, L457 (1974).
[CrossRef]

P. Mansfield, P. K. Grannell, “NMR Diffraction in Solids,” J. Phys. C. 6, L422 (1973); P. Mansfield, P. K. Grannell, “Diffraction and Microscopy in Solids and Liquids by NMR,” Phys. Rev. 12, 3618 (1975).
[CrossRef]

P. Mansfield, P. C. Morris, “NMR Imaging in Biomedicine,” in Advances in Magnetic Resonance, Suppl. 2, J. S. Waugh, Ed. (Academic, New York, 1982).

Maudsley, A. A.

A. A. Maudsley, S. K. Hilal, W. H. Perman, H. E. Simon, “Spatially Resolved High Resolution Spectroscopy by Four- Dimensional NMR,” J. Magn. Reson. 51, 147 (1983).

A. A. Maudsley, “Multiple-Line-Scanning Spin Density Imaging,” J. Magn. Reson. 41, 112 (1980).

P. Mansfield, A. A. Maudsley, “Planar Spin Imaging by NMR,” J. Magn. Reson. 27, 101 (1977).

P. Mansfield, A. A. Maudsley, T. Baines, “Fast Scan Proton Density Imaging by NMR,” J. Phys. E 9, 271 (1976); P. Mansfield, A. A. Maudsley, “Medical Imaging by NMR,” J. Br. Radiol. 50, 188 (1977).
[CrossRef]

P. Mansfield, A. A. Maudsley, “Planar Spin Imaging by NMR,” J. Phys. C 9, L409 (1976).
[CrossRef]

Mehlkopf, A. F.

A. Bax, A. F. Mehlkopf, J. Smidt, “Absorption Spectra From Phase-Modulated Spin Echoes,” J. Magn. Reson. 35, 373 (1979).

Minkoff, L.

R. Damadian, M. Goldsmith, L. Minkoff, “NMR in Cancer,” Physiol. Chem. Phys. 9, 97 (1977); R. Damadian, L. Minkoff, M. Goldsmith, J. A. Koutcher, “Field-Focusing Nuclear Magnetic Resonance (FONAR). Formation of Chemical Scans in Man,” Naturwissenschaften 65, 250 (1978).
[CrossRef] [PubMed]

Morris, P. C.

P. Mansfield, P. C. Morris, “NMR Imaging in Biomedicine,” in Advances in Magnetic Resonance, Suppl. 2, J. S. Waugh, Ed. (Academic, New York, 1982).

Munowitz, M. G.

A. N. Garroway, J. Baum, M. G. Munowitz, A. Pines, “NMR Imaging in Solids by Multiple-Quantum Resonance,” J. Magn. Reson. 60, 337 (1984).

Ohno, K.

K. Ohno, “Application of ESR Imaging to a Continuous Flow Method for Study of Kinetics of Short-Lived Radicals,” J. Magn. Reson. 49, 56 (1982); T. Herrling, N. Klimes, W. Karthe, U. Ewert, B. Ebert, “EPR Zeugmatography with Modulated Magnetic Filled Gradient,” J. Magn. Reson. 49, 203 (1982); K. Ohno, “ESR Imaging: A Deconvolution Method for Hyperfine Patterns,” J. Magn. Reson. 50, 145 (1982).

Ordidge, R. J.

R. J. Ordidge, private communication.

Packard, M.

F. Bloch, W. W. Hansen, M. Packard, “Nuclear Induction,” Phys. Rev. 69, 127 (1946).
[CrossRef]

Payne, J. A.

D. J. Bryant, J. A. Payne, D. N. Firmin, D. B. Longmore, “Measurement of Flow with NMR Imaging Using a Gradient Pulse and Phase Difference Technique,” J. Comput. Assist. Tomogr. 8, 588 (1984).
[CrossRef] [PubMed]

Perman, W. H.

A. A. Maudsley, S. K. Hilal, W. H. Perman, H. E. Simon, “Spatially Resolved High Resolution Spectroscopy by Four- Dimensional NMR,” J. Magn. Reson. 51, 147 (1983).

Pines, A.

A. N. Garroway, J. Baum, M. G. Munowitz, A. Pines, “NMR Imaging in Solids by Multiple-Quantum Resonance,” J. Magn. Reson. 60, 337 (1984).

Pound, R. V.

E. M. Purcell, H. C. Torrey, R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69, 37 (1946).
[CrossRef]

Purcell, E. M.

E. M. Purcell, H. C. Torrey, R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69, 37 (1946).
[CrossRef]

Pykett, I. L.

I. L. Pykett, B.R. Rosen, “Nuclear Magnetic Resonance: In Vivo Proton Chemical Shift Imaging,” Radiology 149, 197 (1983).
[PubMed]

Red-path, T.

W. A. Edelstein, J. M. S. Hutchison, G. Johnson, T. Red-path, “Spin Warp NMR Imaging and Applications to Human Whole-Body Imaging,” Phys Med. Biol. 25, 751 (1980).
[CrossRef] [PubMed]

Rosen, B.R.

I. L. Pykett, B.R. Rosen, “Nuclear Magnetic Resonance: In Vivo Proton Chemical Shift Imaging,” Radiology 149, 197 (1983).
[PubMed]

Rothwell, W. P.

W. P. Rothwell, H. J. Vinegar, “Petrophysical Applications of NMR Imaging,” Appl. Opt. 24, this issue (1985).
[CrossRef] [PubMed]

W. P. Rothwell, P. P. Gentempo, “Nonmedical Applications of NMR Imaging,” Bruker Reports 1, 46 (1985).

W. P. Rothwell, D. R. Holecek, J. A. Kershaw, “NMR Imaging: Study of Fluid Absorption by Polymer Composites,” J. Polym. Sci. Polym. Lett. Ed. 22, 241 (1984).
[CrossRef]

Simon, H. E.

A. A. Maudsley, S. K. Hilal, W. H. Perman, H. E. Simon, “Spatially Resolved High Resolution Spectroscopy by Four- Dimensional NMR,” J. Magn. Reson. 51, 147 (1983).

Singer, J. R.

J. R. Singer, L. E. Crooks, “Nuclear Magnetic Resonance Blood Flow Measurements in the Human Brain,” Science London 221, 654 (1983).

Slichter, C. P.

C. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin, 1978).

Smidt, J.

A. Bax, A. F. Mehlkopf, J. Smidt, “Absorption Spectra From Phase-Modulated Spin Echoes,” J. Magn. Reson. 35, 373 (1979).

Smith, L. S.

W. A. Edelstein, P. A. Bottomley, H. R. Hart, L. S. Smith, “Signal, Noise, and Contrast in Nuclear Magnetic Resonance (NMR) Imaging,” J. Comput. Assist. Tomogr. 7, 391 (1983).
[CrossRef] [PubMed]

Stejskal, E. O.

E. O. Stejskal, J. E. Tanner, “Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient,” J. Chem. Phys. 42, 288 (1965).
[CrossRef]

Suits, B. H.

B. H. Suits, D. White, “NMR Imaging in Solids,” Solid State Commun. 50, 291 (1984).
[CrossRef]

Sutherland, R. J.

R. J. Sutherland, J. M. S. Hutchison, “Three-Dimensional NMR Imaging Using Selective Excitation,” J. Phys. E 11, 79 (1978).
[CrossRef]

Tanner, J. E.

E. O. Stejskal, J. E. Tanner, “Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient,” J. Chem. Phys. 42, 288 (1965).
[CrossRef]

Torrey, H. C.

E. M. Purcell, H. C. Torrey, R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69, 37 (1946).
[CrossRef]

Vinegar, H. J.

W. P. Rothwell, H. J. Vinegar, “Petrophysical Applications of NMR Imaging,” Appl. Opt. 24, this issue (1985).
[CrossRef] [PubMed]

Waluch, V.

V. Waluch, W. G. Bradley, “NMR Even Echo Rephasing in Slow Laminar Flow,” J. Comput. Assist. Tomogr. 8, 594 (1984).
[CrossRef] [PubMed]

Welti, I.

A. Kumar, I. Welti, R. R. Ernst, “Imaging of Macroscopic Objects by NMR Fourier Zeugmatography,” Naturwissenshaftn 62, 34 (1975); A. Kumar, D. Welti, R. R. Ernst, “NMR Fourier Zeugmatography,” J. Magn. Reson. 18, 69 (1975).
[CrossRef]

White, D.

B. H. Suits, D. White, “NMR Imaging in Solids,” Solid State Commun. 50, 291 (1984).
[CrossRef]

Wind, R. A.

R. A. Wind, C. S. Yannoni, “Selective Spin Imaging in Solids,” J. Magn. Reson. 36, 269 (1979).

Yannoni, C. S.

R. A. Wind, C. S. Yannoni, “Selective Spin Imaging in Solids,” J. Magn. Reson. 36, 269 (1979).

Young, I. R.

I. R. Young et al., “Initial Clinical Evaluation of a Whole-Body Nuclear Magnetic-Resonance (NMR) Tomograph,” J. Comput. Assist. Tomogr. 6, 1 (1982).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

E. R. Andrew, “NMR Imaging,” Acc. Chem. Res. 16, 114 (1983).
[CrossRef]

Appl. Opt. (2)

W. P. Rothwell, H. J. Vinegar, “Petrophysical Applications of NMR Imaging,” Appl. Opt. 24, this issue (1985).
[CrossRef] [PubMed]

E. Feig, F. Greenleaf, “Narrow-Band Chemical-Shift Imaging,” Appl. Opt. 24, 3977 (1985).
[CrossRef] [PubMed]

Bruker Reports (1)

W. P. Rothwell, P. P. Gentempo, “Nonmedical Applications of NMR Imaging,” Bruker Reports 1, 46 (1985).

IEEE Trans. (1)

P. C. Lauterbur, C.-M. Lai, “Zeugmatography by Reconstruction from Projections,” IEEE Trans. 27, 1227 (1980); C.-M. Lai, P. C. Lauterbur, “A Gradient Control Device for Complete Three-Dimensional Nuclear Magnetic Resonance Zeugmatographic Imaging,” J. Phys. E 13, 747 (1980); C.-M. Lai, “True Three-Dimensional Nuclear Magnetic Resonance Imaging by Fourier Reconstruction Zeugmatography,” J. Appl. Phys. 52, 1141 (1981).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

L. E. Crooks, “Recent Developments in Nuclear Magnetic-Resonance Imaging and Flow Measurements,” IEEE Trans. Nucl. Sci. NS-31, 1006 (1984).
[CrossRef]

J. Chem. Phys. (1)

E. O. Stejskal, J. E. Tanner, “Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient,” J. Chem. Phys. 42, 288 (1965).
[CrossRef]

J. Comput. Assist. Tomogr. (4)

I. R. Young et al., “Initial Clinical Evaluation of a Whole-Body Nuclear Magnetic-Resonance (NMR) Tomograph,” J. Comput. Assist. Tomogr. 6, 1 (1982).
[CrossRef] [PubMed]

W. A. Edelstein, P. A. Bottomley, H. R. Hart, L. S. Smith, “Signal, Noise, and Contrast in Nuclear Magnetic Resonance (NMR) Imaging,” J. Comput. Assist. Tomogr. 7, 391 (1983).
[CrossRef] [PubMed]

D. J. Bryant, J. A. Payne, D. N. Firmin, D. B. Longmore, “Measurement of Flow with NMR Imaging Using a Gradient Pulse and Phase Difference Technique,” J. Comput. Assist. Tomogr. 8, 588 (1984).
[CrossRef] [PubMed]

V. Waluch, W. G. Bradley, “NMR Even Echo Rephasing in Slow Laminar Flow,” J. Comput. Assist. Tomogr. 8, 594 (1984).
[CrossRef] [PubMed]

J. Magn. Reson. (9)

P. Brunner, R. R. Ernst, “Sensitivity and Performance Time in NMR Imaging,” J. Magn. Reson. 33, 83 (1979).

K. Ohno, “Application of ESR Imaging to a Continuous Flow Method for Study of Kinetics of Short-Lived Radicals,” J. Magn. Reson. 49, 56 (1982); T. Herrling, N. Klimes, W. Karthe, U. Ewert, B. Ebert, “EPR Zeugmatography with Modulated Magnetic Filled Gradient,” J. Magn. Reson. 49, 203 (1982); K. Ohno, “ESR Imaging: A Deconvolution Method for Hyperfine Patterns,” J. Magn. Reson. 50, 145 (1982).

A. A. Maudsley, S. K. Hilal, W. H. Perman, H. E. Simon, “Spatially Resolved High Resolution Spectroscopy by Four- Dimensional NMR,” J. Magn. Reson. 51, 147 (1983).

A. Bax, A. F. Mehlkopf, J. Smidt, “Absorption Spectra From Phase-Modulated Spin Echoes,” J. Magn. Reson. 35, 373 (1979).

D. I. Hoult, “Rotating Frame Zeugmatography,” J. Magn. Reson. 33, 183 (1979).

A. A. Maudsley, “Multiple-Line-Scanning Spin Density Imaging,” J. Magn. Reson. 41, 112 (1980).

P. Mansfield, A. A. Maudsley, “Planar Spin Imaging by NMR,” J. Magn. Reson. 27, 101 (1977).

R. A. Wind, C. S. Yannoni, “Selective Spin Imaging in Solids,” J. Magn. Reson. 36, 269 (1979).

A. N. Garroway, J. Baum, M. G. Munowitz, A. Pines, “NMR Imaging in Solids by Multiple-Quantum Resonance,” J. Magn. Reson. 60, 337 (1984).

J. Phys. C (3)

P. Mansfield, “Multi-Planar Image Formation using NMR Spin Echoes,” J. Phys. C 10, L55 (1977); P. Mansfield, I. L. Pykett, “Biological and Medical Imaging by NMR,” J. Magn. Reson. 29, 355 (1978).
[CrossRef]

P. Mansfield, A. A. Maudsley, “Planar Spin Imaging by NMR,” J. Phys. C 9, L409 (1976).
[CrossRef]

A. N. Garroway, P. K. Grannell, P. Mansfield, “Image Formation in NMR by a Selective Irradiative Process,” J. Phys. C 7, L457 (1974).
[CrossRef]

J. Phys. C. (1)

P. Mansfield, P. K. Grannell, “NMR Diffraction in Solids,” J. Phys. C. 6, L422 (1973); P. Mansfield, P. K. Grannell, “Diffraction and Microscopy in Solids and Liquids by NMR,” Phys. Rev. 12, 3618 (1975).
[CrossRef]

J. Phys. E (2)

P. Mansfield, A. A. Maudsley, T. Baines, “Fast Scan Proton Density Imaging by NMR,” J. Phys. E 9, 271 (1976); P. Mansfield, A. A. Maudsley, “Medical Imaging by NMR,” J. Br. Radiol. 50, 188 (1977).
[CrossRef]

R. J. Sutherland, J. M. S. Hutchison, “Three-Dimensional NMR Imaging Using Selective Excitation,” J. Phys. E 11, 79 (1978).
[CrossRef]

J. Polym. Sci. Polym. Lett. Ed. (1)

W. P. Rothwell, D. R. Holecek, J. A. Kershaw, “NMR Imaging: Study of Fluid Absorption by Polymer Composites,” J. Polym. Sci. Polym. Lett. Ed. 22, 241 (1984).
[CrossRef]

Nature London (2)

P. C. Lauterbur, “Image Formation by Induced Local Interactions. Examples Employing Nuclear Magnetic Resonance,” Nature London 242, 190 (1973).
[CrossRef]

W. S. Hinshaw, P. A. Bottomley, G. N. Holland, “Radiographic Thin-Section Image of Human Wrist by Nuclear Magnetic-Resonance,” Nature London 270, 722 (1977); W. S. Hinshaw, E. R. Andrew, P. A. Bottomley, G. N. Holland, W. S. Moore, B. S. Worthington, “Display of Cross Sectional Anatomy by Nuclear Magnetic Resonance Imaging,” and “In Vivo Study of the Forearm and Hand by Thin Section NMR Imaging,” Br. J. Radiol. 51, 273 (1978); Br. J. Radiol. 52, 36 (1979); E. R. Andrew, P. A. Bottomley, W. S. Hinshaw, G. N. Holland, W. S. Moore, C. Simaroj, “NMR Images by Multiple Sensitive Point Method—Application to Larger Biological Systems,” Phys. Med. Biol. 22, 971 (1977).
[CrossRef] [PubMed]

Naturwissenshaftn (1)

A. Kumar, I. Welti, R. R. Ernst, “Imaging of Macroscopic Objects by NMR Fourier Zeugmatography,” Naturwissenshaftn 62, 34 (1975); A. Kumar, D. Welti, R. R. Ernst, “NMR Fourier Zeugmatography,” J. Magn. Reson. 18, 69 (1975).
[CrossRef]

Phys Med. Biol. (1)

W. A. Edelstein, J. M. S. Hutchison, G. Johnson, T. Red-path, “Spin Warp NMR Imaging and Applications to Human Whole-Body Imaging,” Phys Med. Biol. 25, 751 (1980).
[CrossRef] [PubMed]

Phys. Lett. A (1)

W. S. Hinshaw, “Spin Mapping—Application of Moving Gradients to NMR,” Phys. Lett. A 48, 87 (1974); W. S. Hinshaw, “Image-Formation by Nuclear Magnetic-Resonance—Sensitive-Point Method,” J. Appl. Phys. 47, 3709 (1976).
[CrossRef]

Phys. Rev. (2)

E. M. Purcell, H. C. Torrey, R. V. Pound, “Resonance Absorption by Nuclear Magnetic Moments in a Solid,” Phys. Rev. 69, 37 (1946).
[CrossRef]

F. Bloch, W. W. Hansen, M. Packard, “Nuclear Induction,” Phys. Rev. 69, 127 (1946).
[CrossRef]

Physica B&C (1)

S. Emid, J. H. N. Creyghton, “High-Resolution NMR Imaging in Solids,” Physica B&C, 128, 81 (1985).

Physiol. Chem. Phys. (1)

R. Damadian, M. Goldsmith, L. Minkoff, “NMR in Cancer,” Physiol. Chem. Phys. 9, 97 (1977); R. Damadian, L. Minkoff, M. Goldsmith, J. A. Koutcher, “Field-Focusing Nuclear Magnetic Resonance (FONAR). Formation of Chemical Scans in Man,” Naturwissenschaften 65, 250 (1978).
[CrossRef] [PubMed]

Radiology (1)

I. L. Pykett, B.R. Rosen, “Nuclear Magnetic Resonance: In Vivo Proton Chemical Shift Imaging,” Radiology 149, 197 (1983).
[PubMed]

Rev. Sci. Instrum. (1)

P. A. Bottomly, “NMR Imaging Techniques and Applications: A Review,” Rev. Sci. Instrum. 53, 1319 (1982).
[CrossRef]

Science London (1)

J. R. Singer, L. E. Crooks, “Nuclear Magnetic Resonance Blood Flow Measurements in the Human Brain,” Science London 221, 654 (1983).

Solid State Commun. (1)

B. H. Suits, D. White, “NMR Imaging in Solids,” Solid State Commun. 50, 291 (1984).
[CrossRef]

Other (7)

Abstracts, Third Annual Meeting of the Society of Magnetic Resonance in Medicine, 13–17 Aug., 1984, New York.

E. D. Becker, High Resolution NMR: Theory and Chemical Applications (Academic, New York, 1980).

P. Mansfield, P. C. Morris, “NMR Imaging in Biomedicine,” in Advances in Magnetic Resonance, Suppl. 2, J. S. Waugh, Ed. (Academic, New York, 1982).

C. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin, 1978).

U. Haeberlen, “High Resolution NMR in Solids: Selective Averaging,” in Advances in Magnetic Resonance, Suppl. 1, J. S. Waugh, Ed. (Academic, New York, 1976).

L. E. Crooks, J. C. Hoenninger, M. Arakawa, “Method and Apparatus for Rapid NMR Imaging of Nuclear Densities Within an Object,” U.S. Patent4,318,043 (1982), “Method and Apparatus for Mapping Lines of Nuclear Density Within an Object using Nuclear Magnetic Resonance,” U.S. Patent4,297,637 (1981).

R. J. Ordidge, private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Basic schematic of the important hardware on an NMR imaging system. The principal difference between an NMR imaging system and a conventional NMR spectrometer is the presence of gradient coils purposely designed to make the field inhomogeneous.

Fig. 2
Fig. 2

Classification of NMR imaging techniques as proposed by Brunner and Ernst.18 For the purpose of discussion the imaging volume is broken into NxNyNz voxels indexed by their Cartesian coordinates. To first order (ignoring relaxation and experimental considerations), simultaneous volume techniques will be optimal with respect to signal-to-noise per unit time. Signal from each voxel, V(x,y,z), is averaged during each step of the experiment. We define the signal-to-noise for simultaneous volume techniques as S/N = 1. Sequential plane techniques are less efficient; a given voxel is averaged Nx fewer times. Therefore, S/N = Nx−1/2 etc.

Fig. 3
Fig. 3

Projection reconstruction. A linear magnetic field gradient is applied to the sample so that the resonant frequencies of the nuclear spins take on a spatial dependence. The resulting NMR spectrum represents a projection of nuclear spin density perpendicular to the direction of the applied gradient. The figure shows experimentally obtained projections taken at 0, 45, 90, 135, and 180° from a test phantom. A 2-D image is produced from a series of projections distributed over a 180° arc in analogy to x-ray CT.

Fig. 4
Fig. 4

Fourier imaging. Introduced by Kumar et al.28 and initially referred to as Fourier zeugmatography. This method provides an excellent illustration of the principle of phase encoding. Spatial encoding in the X and Y directions is achieved during the evolution period. Here the applied gradients Gx and Gy induce a spatially dependent phase modulation of the detected signal.

Fig. 5
Fig. 5

This alternative Fourier imaging technique (idealized sequence shown), first proposed by Edelstein et al. in the form of spin warp imaging,29 takes advantage of the fact that incrementing the magnitude of the applied gradient (fixed evolution time) is equivalent from a phase encoding standpoint to incrementing the evolution time (fixed gradient). This modification has the advantage that signal decay due to T2 processes is constant throughout the sequence.

Fig. 6
Fig. 6

Chemical shift imaging is a promising new direction in NMRI. There are several approaches that can be taken to encode both chemical shift and spatial information. The approach presented here (idealized sequenced shown) is an extension of Fourier imaging. Here spatial encoding of the NMR response is achieved by phase encoding during the evolution period. (The spin Hamiltonian is dominated by the applied gradient.) The chemical shift information is frequency encoded during the detection period. If all three spatial dimensions are imaged, the resulting data set is four dimensional.

Fig. 7
Fig. 7

Multiple-line scanning: (a) pulse sequence; (b) outline of experiment. Multiple-line scanning24 provides an example of selective irradiation. Frequency selective 90 and 180° pulses are applied to excite an NMR response from the selective line arising from the intersection of the two selected planes. [The three numbered steps in (b) correspond to the respective portion of the sequence in (a).]

Fig. 8
Fig. 8

Circular regions at the left side of the figure represent two regions of spin density separated in distance by Δx. In a homogeneous magnetic field, a single resonance will be observed with a natural linewidth Δν1/2. (We assume here that there is no spectral fine structure.) If a linear magnetic field gradient Gx is applied in the manner illustrated, the resonance will break up into a pair of resonances separated in frequency by γGxΔx. The two regions will be resolved in the resulting image if γGxΔx > Δν1/2.

Tables (1)

Tables Icon

Table I Representative Imaging Techniques

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

M z ( t ) = M 0 [ 1 exp ( t / T 1 ) ] .
M x , y ( t ) = M 0 exp ( t / T 2 ) .
ω = γ B z ,
H ˆ = γ G x x S ˆ z ,
S ( t ) = C ρ ( x , y ) T r [ σ ( t ) S ˆ + ] d x d y ,
S ˆ + = S ˆ x + i S ˆ y .
σ ( t ) = T exp [ i 0 T H ˆ ( t ) d t ] σ ( 0 ) T exp [ i 0 T H ˆ ( t ) d t ] .
σ ( t ) = exp ( γ G x x t S ˆ z ) σ ( 0 ) exp ( i γ G x x t S ˆ z ) .
S ( t ) = C ρ ( x , y ) Tr [ exp ( i γ G x x t S ˆ z ) S ˆ x × exp ( i γ G x x t S ˆ z ) S ˆ + ] d x d y .
S ( t ) = C ρ ( r ) S ( r , t ) d x d y ,
S ( r , t ) = exp ( i γ G x x t ) .
S ( ω ) = C ρ ( r ) S ( r , ω ) d x d y ,
S ( r , ω ) = exp ( i γ G x x t ) exp ( i ω t ) d t = δ ( ω γ G x x ) .
S ( ω ) = ρ ( x , y ) δ ( ω γ G x x ) d x d y
S ( ω ) = ρ ( ω / γ G x , y ) d y ,
H ˆ 1 = γ G x x S ˆ z for 0 t < t 1 , H ˆ 2 = γ G y y S ˆ z for t 1 t < t 2 , H ˆ 3 = γ G z z S ˆ z for t 2 t .
S ( t ) = C ρ ( r ) Tr [ σ ( t ) S ˆ + ] d r .
σ ( t ) = exp [ i γ ( r · G ˜ · t ) S ˆ z ] σ ( 0 ) exp [ i γ ( r · G ˜ · t ) S ˆ z ] ,
G = [ G x 0 0 0 G y 0 0 0 G z ] , r = [ x , y , z ] , t = [ t 1 t 2 t 3 ] .
S ( t ) = C ρ ( r ) S ( r , t ) d r ,
S ( r , t ) = exp ( i γ r · G ˜ · t ) .
S ( ω ) = C ρ ( r ) S ( r , ω ) d r ,
S ( r , ω ) = exp ( i γ r · G ˜ · t e i ω · t ) d t = δ ( ω 1 γ G x x ) δ ( ω 2 γ G y y ) δ ( ω 3 γ G z z ) .
S ( ω ) = S ( ω 1 , ω 2 , ω 3 ) = C ρ ( x = ω 1 / ω x , y = ω 2 / ω y , z = ω 3 / ω z ) ,
S ( r , t ) = exp ( i γ r · G ˜ · t ) exp [ t · 1 / T 2 ( r ) ] ,
S ( r , ω ) = exp ( i γ r · G ˜ · t ) exp [ t · 1 / T 2 ( r ) ] exp ( i ω · t ) d t = L ( ω 1 ω x ) L ( ω 2 ω y ) L ( ω 3 ω z ) ,
L ( ω ) = T 2 ( r ) 1 + i ω 2 T 2 2 ( r ) .
S ( ω ) = C ρ ( r ) L ( ω 1 ω x ) L ( ω 2 ω y ) L ( ω 3 ω z ) d r .
γ Δ G x , y t a = γ G z Δ t b ,
σ ( t a ) = ( 1 P x ) ρ ( x , y , z ) S ˆ z + P x ρ ( x , y , z ) S ˆ y ;
σ ( t a + 2 t ) = P z ( 1 P x ) ρ ( x , y , z ) S ˆ z + ( 1 P z ) ( 1 P x ) ρ ( x , y , z ) S ˆ z P z P x ρ ( x , y , z ) S ˆ y + ( 1 P z ) P x ρ ( x , y , z ) [ S ˆ y cos ( 2 γ G z z t ) S ˆ x sin ( 2 γ G z t ) ] .
σ ( t a + 2 t ) = ρ ( x ¯ 0 , y , z 0 ) S ˆ z + ρ ( x ¯ 0 , y , z ¯ 0 ) S ˆ z ρ ( x 0 , y , z 0 ) S ˆ y + ρ ( x 0 , y , z ¯ 0 ) × [ S ˆ y cos ( 2 γ G z z t ) S ˆ x sin ( 2 γ G z z t ) ] .
σ ( t a + 2 t + t ) = ρ ( x ¯ 0 , y , z 0 ) S ˆ z + ρ ( x ¯ 0 , y , z ¯ 0 ) S ˆ z ρ ( x 0 , y , z 0 ) [ S ˆ y cos ( γ G y y t ) S ˆ x sin ( γ G y y t ) ] .
S ( t ) = Tr [ σ ( t a + 2 t + t ) S ˆ + ] d r = C ρ ( x 0 , y , z 0 ) sin ( γ G y y t ) d y i C ρ ( x 0 , y , z 0 ) cos ( γ G y y t ) d y .
γ G Δ x > Δ ν 1 / 2 .

Metrics