Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Bryngdahl, “Moire: Formation and Interpretation,” J. Opt. Soc. Am. 64, 1287 (1974).
    [CrossRef]
  2. A. W. Lohmann, D. P. Paris, “Variable Fresnel Zone Pattern,” Appl. Opt. 6, 1567 (1967).
    [CrossRef] [PubMed]
  3. J. M. Burch, C. Forno, “High Resolution Moiré Photography,” Opt. Eng. 21, 602 (1982).
    [CrossRef]

1982 (1)

J. M. Burch, C. Forno, “High Resolution Moiré Photography,” Opt. Eng. 21, 602 (1982).
[CrossRef]

1974 (1)

1967 (1)

Bryngdahl, O.

Burch, J. M.

J. M. Burch, C. Forno, “High Resolution Moiré Photography,” Opt. Eng. 21, 602 (1982).
[CrossRef]

Forno, C.

J. M. Burch, C. Forno, “High Resolution Moiré Photography,” Opt. Eng. 21, 602 (1982).
[CrossRef]

Lohmann, A. W.

Paris, D. P.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Correlelogram.

Fig. 2
Fig. 2

Stereo light box.

Fig. 3
Fig. 3

Intensity Correlelogram: (a) first layer picture; (b) second layer picture; and (c) super position picture.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

T n = m = m min m max P m + n Q m .
m = d tan ψ Δ x ,
d = layer spacing , and ψ = off-normal viewing angle .
L n = perspective picture for the left eye , R n = perspective picture for the right eye .
L n = | cos ( λ n ) | P n = | cos ( θ n ) | , R n = | cos ( ρ n ) | Q n = | cos ( ϕ n ) | ,
T n = | cos ( τ n ) | = L n or R n
λ n = θ n + ϕ n , ρ n = θ n + ϕ n + 1 .
θ n = λ n ϕ n ,
ϕ n + 1 = ρ n θ n ,
ϕ n min = 0
A = ( P 1 + P 2 ) / 2 , B = ( Q 1 + Q 2 ) / 2 ,
T = ( P 1 Q 1 + P 2 Q 2 ) / 2 .
A B 0 T 1 . P Q
P 1 = T A Q 2 y Q 2 min [ 1 , 2 B 1 ] d
P 2 = 2 A P 1 d max [ 0 , B , T A , 2 B T A , ( 2 A 1 ) B T A 1 , 2 B 1 ]
Q 1 = 2 B Q 2 max [ 0 , 2 B 1 ] d
d min [ 1 , B , T A , 2 B T A , ( 2 A 1 ) B T A 1 , 2 B ] .

Metrics