Abstract

In this paper we present the first accurate determination, from laboratory measurements, of the temperature dependence of CO2 continuous absorption beyond the ν3 band head, with N2 and O2 as perturbers. The χ form factors previously published have been tested and optimized, and new form factors are proposed. It has been clearly demonstrated for N2, as well as for O2 broadening, that a χ factor independent of T in the range 193 ≤ T ≤ 300 K gives calculated values of the absorption coefficient in fair agreement (±20% level) with observed values in the spectral region 2400 < σ < 2500 cm−1.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Winters, S. Silverman, W. S. Benedict, “Line Shape in the Wing Beyond the Band Head of the 4.3 μm Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
    [CrossRef]
  2. R. P. Madden, “High Resolution Study of CO2 Absorption Spectra Between 15 and 18 μm,” J. Chem. Phys. 35, 2083 (1961).
    [CrossRef]
  3. D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, “Shapes of Collision-Broadened CO2 Lines,” J. Opt. Soc. Am. 59, 267 (1969).
    [CrossRef]
  4. R. Le Doucen, C. Cousin, C. Boulet, A. Henry, “Temperature Dependence of the Absorption in the Region Beyond the 4.3-μm Band Head of CO2. 1: Pure CO2 Case,” Appl. Opt. 24, 897 (1985).
    [CrossRef] [PubMed]
  5. R. Le Doucen, V. Menoux, M. Larvor, C. Haeusler, “Réalisation d’un spectromètre infra-rouge de résolution moyenne, corrigé de la coma,” Appl. Opt. 19, 3110 (1980).
    [CrossRef]
  6. R. Le Doucen, C. Cousin, V. Menoux, “Carbon Furnace Infrared Source,” J. Phys. E 17, 1107 (1984).
    [CrossRef]
  7. R. Le Doucen, J. P. Houdeau, C. Cousin, V. Menoux, “Variable Path-length, Low Temperature Cells for Absorption Spectroscopy,” J. Phys. E 18, 199 (1985).
    [CrossRef]
  8. A. Valentin, Thesis, Paris (1977).
  9. V. I. Dianov-Klokov, I. P. Malkov, “Absorption near 4.3 μm in the Earth’s Atmosphere by the [N2 − N2] and [N2 − O2] Complexes,” Iz. Atmos. Oceanic Phys. 9, 729 (1973).
  10. J. Susskind, J. E. Searl, “Atmospheric Absorption near 2400 cm−1,” J. Quant. Spectrosc. Radiat. Transfer. 18, 581 (1977).
    [CrossRef]
  11. N. Husson, A. Chedin, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, “La banque de données Geisa,” Internal Reports 108 (1980) and 116 (1982), L.M.D., Ecole Polytechnique, Palaiseau, France.
  12. C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II Etude expérimentale de l’élargissement des raies de la transition 00°1 − (10°0,02°0)I de CO2 perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
    [CrossRef]
  13. V. Malathy Devy, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strength, Half-widths, and Temperature Dependence of Half-widths for CO2 Spectral Lines near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984).
    [CrossRef]
  14. M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational-Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spektrosk. 48, 732 (1980) [Opt. Spectrosc. 48, 403 (1980)].
  15. L. S. Bernstein, D. C. Robertson, J. A. Conant, B. P. Sandford, “Measured and Predicted Atmospheric Transmission in the 4.0–5.3-μm Region and the Contribution of Continuum Absorption by CO2 and N2,” Appl. Opt. 18, 2454 (1979).
    [CrossRef] [PubMed]
  16. G. Birnbaum, “The Shape of Collision Broadened Lines from Resonance to the Far Wings,” J. Quant. Spectrosc. Radiat. Transfer. 21, 597 (1979).
    [CrossRef]
  17. M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, A. Blanchard, “Spectral Line Profiles in the 4.3-μm Band of CO2,” in Technical Digest, Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (Optical Society of America, Washington, D.C., 1980), paper WP16-1.
  18. C. P. Rinsland, M. A. H. Smith, J. M. Russel, J. H. Park, C. B. Farmer, “Stratospheric Measurements of Continuous Absorption near 2400 cm−1,” Appl. Opt. 20, 4167 (1981).
    [CrossRef] [PubMed]
  19. L. D. Kaplan, M. T. Chahine, J. Susskind, J. E. Searl, “Spectral Band Passes for a High Precision Satellite Sounder,” Appl. Opt. 16, 322 (1977).
    [CrossRef] [PubMed]

1985 (2)

R. Le Doucen, C. Cousin, C. Boulet, A. Henry, “Temperature Dependence of the Absorption in the Region Beyond the 4.3-μm Band Head of CO2. 1: Pure CO2 Case,” Appl. Opt. 24, 897 (1985).
[CrossRef] [PubMed]

R. Le Doucen, J. P. Houdeau, C. Cousin, V. Menoux, “Variable Path-length, Low Temperature Cells for Absorption Spectroscopy,” J. Phys. E 18, 199 (1985).
[CrossRef]

1984 (2)

R. Le Doucen, C. Cousin, V. Menoux, “Carbon Furnace Infrared Source,” J. Phys. E 17, 1107 (1984).
[CrossRef]

V. Malathy Devy, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strength, Half-widths, and Temperature Dependence of Half-widths for CO2 Spectral Lines near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[CrossRef]

1981 (1)

1980 (2)

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational-Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spektrosk. 48, 732 (1980) [Opt. Spectrosc. 48, 403 (1980)].

R. Le Doucen, V. Menoux, M. Larvor, C. Haeusler, “Réalisation d’un spectromètre infra-rouge de résolution moyenne, corrigé de la coma,” Appl. Opt. 19, 3110 (1980).
[CrossRef]

1979 (2)

1977 (2)

L. D. Kaplan, M. T. Chahine, J. Susskind, J. E. Searl, “Spectral Band Passes for a High Precision Satellite Sounder,” Appl. Opt. 16, 322 (1977).
[CrossRef] [PubMed]

J. Susskind, J. E. Searl, “Atmospheric Absorption near 2400 cm−1,” J. Quant. Spectrosc. Radiat. Transfer. 18, 581 (1977).
[CrossRef]

1973 (1)

V. I. Dianov-Klokov, I. P. Malkov, “Absorption near 4.3 μm in the Earth’s Atmosphere by the [N2 − N2] and [N2 − O2] Complexes,” Iz. Atmos. Oceanic Phys. 9, 729 (1973).

1972 (1)

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II Etude expérimentale de l’élargissement des raies de la transition 00°1 − (10°0,02°0)I de CO2 perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[CrossRef]

1969 (1)

D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, “Shapes of Collision-Broadened CO2 Lines,” J. Opt. Soc. Am. 59, 267 (1969).
[CrossRef]

1964 (1)

B. H. Winters, S. Silverman, W. S. Benedict, “Line Shape in the Wing Beyond the Band Head of the 4.3 μm Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

1961 (1)

R. P. Madden, “High Resolution Study of CO2 Absorption Spectra Between 15 and 18 μm,” J. Chem. Phys. 35, 2083 (1961).
[CrossRef]

Arié, E.

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II Etude expérimentale de l’élargissement des raies de la transition 00°1 − (10°0,02°0)I de CO2 perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[CrossRef]

Bartky, C. E.

D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, “Shapes of Collision-Broadened CO2 Lines,” J. Opt. Soc. Am. 59, 267 (1969).
[CrossRef]

Benedict, W. S.

B. H. Winters, S. Silverman, W. S. Benedict, “Line Shape in the Wing Beyond the Band Head of the 4.3 μm Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

Bernstein, L. S.

Berroir, A.

N. Husson, A. Chedin, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, “La banque de données Geisa,” Internal Reports 108 (1980) and 116 (1982), L.M.D., Ecole Polytechnique, Palaiseau, France.

Birnbaum, G.

G. Birnbaum, “The Shape of Collision Broadened Lines from Resonance to the Far Wings,” J. Quant. Spectrosc. Radiat. Transfer. 21, 597 (1979).
[CrossRef]

Blanchard, A.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, A. Blanchard, “Spectral Line Profiles in the 4.3-μm Band of CO2,” in Technical Digest, Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (Optical Society of America, Washington, D.C., 1980), paper WP16-1.

Bouanich, J. P.

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II Etude expérimentale de l’élargissement des raies de la transition 00°1 − (10°0,02°0)I de CO2 perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[CrossRef]

Boulet, C.

R. Le Doucen, C. Cousin, C. Boulet, A. Henry, “Temperature Dependence of the Absorption in the Region Beyond the 4.3-μm Band Head of CO2. 1: Pure CO2 Case,” Appl. Opt. 24, 897 (1985).
[CrossRef] [PubMed]

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II Etude expérimentale de l’élargissement des raies de la transition 00°1 − (10°0,02°0)I de CO2 perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[CrossRef]

Bulanin, M. O.

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational-Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spektrosk. 48, 732 (1980) [Opt. Spectrosc. 48, 403 (1980)].

Bulychev, V. P.

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational-Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spektrosk. 48, 732 (1980) [Opt. Spectrosc. 48, 403 (1980)].

Burch, D. E.

D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, “Shapes of Collision-Broadened CO2 Lines,” J. Opt. Soc. Am. 59, 267 (1969).
[CrossRef]

Cann, M. W. P.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, A. Blanchard, “Spectral Line Profiles in the 4.3-μm Band of CO2,” in Technical Digest, Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (Optical Society of America, Washington, D.C., 1980), paper WP16-1.

Chahine, M. T.

L. D. Kaplan, M. T. Chahine, J. Susskind, J. E. Searl, “Spectral Band Passes for a High Precision Satellite Sounder,” Appl. Opt. 16, 322 (1977).
[CrossRef] [PubMed]

Chedin, A.

N. Husson, A. Chedin, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, “La banque de données Geisa,” Internal Reports 108 (1980) and 116 (1982), L.M.D., Ecole Polytechnique, Palaiseau, France.

Cohen-Hallaleh, I.

N. Husson, A. Chedin, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, “La banque de données Geisa,” Internal Reports 108 (1980) and 116 (1982), L.M.D., Ecole Polytechnique, Palaiseau, France.

Conant, J. A.

Cousin, C.

R. Le Doucen, C. Cousin, C. Boulet, A. Henry, “Temperature Dependence of the Absorption in the Region Beyond the 4.3-μm Band Head of CO2. 1: Pure CO2 Case,” Appl. Opt. 24, 897 (1985).
[CrossRef] [PubMed]

R. Le Doucen, J. P. Houdeau, C. Cousin, V. Menoux, “Variable Path-length, Low Temperature Cells for Absorption Spectroscopy,” J. Phys. E 18, 199 (1985).
[CrossRef]

R. Le Doucen, C. Cousin, V. Menoux, “Carbon Furnace Infrared Source,” J. Phys. E 17, 1107 (1984).
[CrossRef]

Dianov-Klokov, V. I.

V. I. Dianov-Klokov, I. P. Malkov, “Absorption near 4.3 μm in the Earth’s Atmosphere by the [N2 − N2] and [N2 − O2] Complexes,” Iz. Atmos. Oceanic Phys. 9, 729 (1973).

Farmer, C. B.

Findlay, F. D.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, A. Blanchard, “Spectral Line Profiles in the 4.3-μm Band of CO2,” in Technical Digest, Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (Optical Society of America, Washington, D.C., 1980), paper WP16-1.

Fridovich, B.

V. Malathy Devy, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strength, Half-widths, and Temperature Dependence of Half-widths for CO2 Spectral Lines near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[CrossRef]

Gryvnak, D. A.

D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, “Shapes of Collision-Broadened CO2 Lines,” J. Opt. Soc. Am. 59, 267 (1969).
[CrossRef]

Haeusler, C.

R. Le Doucen, V. Menoux, M. Larvor, C. Haeusler, “Réalisation d’un spectromètre infra-rouge de résolution moyenne, corrigé de la coma,” Appl. Opt. 19, 3110 (1980).
[CrossRef]

Henry, A.

Houdeau, J. P.

R. Le Doucen, J. P. Houdeau, C. Cousin, V. Menoux, “Variable Path-length, Low Temperature Cells for Absorption Spectroscopy,” J. Phys. E 18, 199 (1985).
[CrossRef]

Husson, N.

N. Husson, A. Chedin, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, “La banque de données Geisa,” Internal Reports 108 (1980) and 116 (1982), L.M.D., Ecole Polytechnique, Palaiseau, France.

Jones, G. D.

V. Malathy Devy, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strength, Half-widths, and Temperature Dependence of Half-widths for CO2 Spectral Lines near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[CrossRef]

Kaplan, L. D.

L. D. Kaplan, M. T. Chahine, J. Susskind, J. E. Searl, “Spectral Band Passes for a High Precision Satellite Sounder,” Appl. Opt. 16, 322 (1977).
[CrossRef] [PubMed]

Khodos, E. B.

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational-Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spektrosk. 48, 732 (1980) [Opt. Spectrosc. 48, 403 (1980)].

Lacome, N.

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II Etude expérimentale de l’élargissement des raies de la transition 00°1 − (10°0,02°0)I de CO2 perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[CrossRef]

Larvor, M.

R. Le Doucen, V. Menoux, M. Larvor, C. Haeusler, “Réalisation d’un spectromètre infra-rouge de résolution moyenne, corrigé de la coma,” Appl. Opt. 19, 3110 (1980).
[CrossRef]

Le Doucen, R.

R. Le Doucen, J. P. Houdeau, C. Cousin, V. Menoux, “Variable Path-length, Low Temperature Cells for Absorption Spectroscopy,” J. Phys. E 18, 199 (1985).
[CrossRef]

R. Le Doucen, C. Cousin, C. Boulet, A. Henry, “Temperature Dependence of the Absorption in the Region Beyond the 4.3-μm Band Head of CO2. 1: Pure CO2 Case,” Appl. Opt. 24, 897 (1985).
[CrossRef] [PubMed]

R. Le Doucen, C. Cousin, V. Menoux, “Carbon Furnace Infrared Source,” J. Phys. E 17, 1107 (1984).
[CrossRef]

R. Le Doucen, V. Menoux, M. Larvor, C. Haeusler, “Réalisation d’un spectromètre infra-rouge de résolution moyenne, corrigé de la coma,” Appl. Opt. 19, 3110 (1980).
[CrossRef]

Madden, R. P.

R. P. Madden, “High Resolution Study of CO2 Absorption Spectra Between 15 and 18 μm,” J. Chem. Phys. 35, 2083 (1961).
[CrossRef]

Malathy Devy, V.

V. Malathy Devy, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strength, Half-widths, and Temperature Dependence of Half-widths for CO2 Spectral Lines near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[CrossRef]

Malkov, I. P.

V. I. Dianov-Klokov, I. P. Malkov, “Absorption near 4.3 μm in the Earth’s Atmosphere by the [N2 − N2] and [N2 − O2] Complexes,” Iz. Atmos. Oceanic Phys. 9, 729 (1973).

Menoux, V.

R. Le Doucen, J. P. Houdeau, C. Cousin, V. Menoux, “Variable Path-length, Low Temperature Cells for Absorption Spectroscopy,” J. Phys. E 18, 199 (1985).
[CrossRef]

R. Le Doucen, C. Cousin, V. Menoux, “Carbon Furnace Infrared Source,” J. Phys. E 17, 1107 (1984).
[CrossRef]

R. Le Doucen, V. Menoux, M. Larvor, C. Haeusler, “Réalisation d’un spectromètre infra-rouge de résolution moyenne, corrigé de la coma,” Appl. Opt. 19, 3110 (1980).
[CrossRef]

Nicholls, R. W.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, A. Blanchard, “Spectral Line Profiles in the 4.3-μm Band of CO2,” in Technical Digest, Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (Optical Society of America, Washington, D.C., 1980), paper WP16-1.

Park, J. H.

Patty, R. R.

D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, “Shapes of Collision-Broadened CO2 Lines,” J. Opt. Soc. Am. 59, 267 (1969).
[CrossRef]

Rinsland, C. P.

Robertson, D. C.

Roney, P. L.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, A. Blanchard, “Spectral Line Profiles in the 4.3-μm Band of CO2,” in Technical Digest, Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (Optical Society of America, Washington, D.C., 1980), paper WP16-1.

Russel, J. M.

Sandford, B. P.

Scott, N. A.

N. Husson, A. Chedin, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, “La banque de données Geisa,” Internal Reports 108 (1980) and 116 (1982), L.M.D., Ecole Polytechnique, Palaiseau, France.

Searl, J. E.

J. Susskind, J. E. Searl, “Atmospheric Absorption near 2400 cm−1,” J. Quant. Spectrosc. Radiat. Transfer. 18, 581 (1977).
[CrossRef]

L. D. Kaplan, M. T. Chahine, J. Susskind, J. E. Searl, “Spectral Band Passes for a High Precision Satellite Sounder,” Appl. Opt. 16, 322 (1977).
[CrossRef] [PubMed]

Silverman, S.

B. H. Winters, S. Silverman, W. S. Benedict, “Line Shape in the Wing Beyond the Band Head of the 4.3 μm Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

Smith, M. A. H.

Snyder, D. G. S.

V. Malathy Devy, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strength, Half-widths, and Temperature Dependence of Half-widths for CO2 Spectral Lines near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[CrossRef]

Susskind, J.

J. Susskind, J. E. Searl, “Atmospheric Absorption near 2400 cm−1,” J. Quant. Spectrosc. Radiat. Transfer. 18, 581 (1977).
[CrossRef]

L. D. Kaplan, M. T. Chahine, J. Susskind, J. E. Searl, “Spectral Band Passes for a High Precision Satellite Sounder,” Appl. Opt. 16, 322 (1977).
[CrossRef] [PubMed]

Valentin, A.

A. Valentin, Thesis, Paris (1977).

Winters, B. H.

B. H. Winters, S. Silverman, W. S. Benedict, “Line Shape in the Wing Beyond the Band Head of the 4.3 μm Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

Appl. Opt. (2)

R. Le Doucen, V. Menoux, M. Larvor, C. Haeusler, “Réalisation d’un spectromètre infra-rouge de résolution moyenne, corrigé de la coma,” Appl. Opt. 19, 3110 (1980).
[CrossRef]

L. D. Kaplan, M. T. Chahine, J. Susskind, J. E. Searl, “Spectral Band Passes for a High Precision Satellite Sounder,” Appl. Opt. 16, 322 (1977).
[CrossRef] [PubMed]

Appl. Opt. (3)

Can. J. Phys. (1)

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II Etude expérimentale de l’élargissement des raies de la transition 00°1 − (10°0,02°0)I de CO2 perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[CrossRef]

Iz. Atmos. Oceanic Phys. (1)

V. I. Dianov-Klokov, I. P. Malkov, “Absorption near 4.3 μm in the Earth’s Atmosphere by the [N2 − N2] and [N2 − O2] Complexes,” Iz. Atmos. Oceanic Phys. 9, 729 (1973).

J. Chem. Phys. (1)

R. P. Madden, “High Resolution Study of CO2 Absorption Spectra Between 15 and 18 μm,” J. Chem. Phys. 35, 2083 (1961).
[CrossRef]

J. Mol. Spectrosc. (1)

V. Malathy Devy, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strength, Half-widths, and Temperature Dependence of Half-widths for CO2 Spectral Lines near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[CrossRef]

J. Opt. Soc. Am. (1)

D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, “Shapes of Collision-Broadened CO2 Lines,” J. Opt. Soc. Am. 59, 267 (1969).
[CrossRef]

J. Phys. E (1)

R. Le Doucen, J. P. Houdeau, C. Cousin, V. Menoux, “Variable Path-length, Low Temperature Cells for Absorption Spectroscopy,” J. Phys. E 18, 199 (1985).
[CrossRef]

J. Phys. E (1)

R. Le Doucen, C. Cousin, V. Menoux, “Carbon Furnace Infrared Source,” J. Phys. E 17, 1107 (1984).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer. (2)

J. Susskind, J. E. Searl, “Atmospheric Absorption near 2400 cm−1,” J. Quant. Spectrosc. Radiat. Transfer. 18, 581 (1977).
[CrossRef]

G. Birnbaum, “The Shape of Collision Broadened Lines from Resonance to the Far Wings,” J. Quant. Spectrosc. Radiat. Transfer. 21, 597 (1979).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

B. H. Winters, S. Silverman, W. S. Benedict, “Line Shape in the Wing Beyond the Band Head of the 4.3 μm Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

Opt. Spektrosk. (1)

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational-Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spektrosk. 48, 732 (1980) [Opt. Spectrosc. 48, 403 (1980)].

Other (3)

N. Husson, A. Chedin, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, “La banque de données Geisa,” Internal Reports 108 (1980) and 116 (1982), L.M.D., Ecole Polytechnique, Palaiseau, France.

A. Valentin, Thesis, Paris (1977).

M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, A. Blanchard, “Spectral Line Profiles in the 4.3-μm Band of CO2,” in Technical Digest, Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (Optical Society of America, Washington, D.C., 1980), paper WP16-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

CO2–N2: Plot of ( L P * CO 2 ) 1 log I 0 / I t in cm−1 amagat−1 vs P * N 2 in Torr at 2415 cm−1 and room temperature for three CO2 fillings: ×, 37.5 Torr; ●, 70 torr; ○, 128 Torr. Note on the sample where P * CO 2 was ~40 Torr the effect of pressure-induced absorption by N2 when P * N 2 was great.

Fig. 2
Fig. 2

Normalized absorption coefficient B0(σ,T) in cm−1 amagat−2 for CO2 broadened by N2: (a) wave number dependence of B0(σ,T) for two temperatures 296 and 193 K; (b) temperature dependence at various wave numbers (cm−1).

Fig. 3
Fig. 3

Normalized absorption coefficient B0(σ,T), in cm−1 amagat−2 for CO2 broadened by O2: (a) wave number dependent of B0(σ,T) for two temperatures 296 and 193 K; (b) temperature dependence at various wave numbers (cm−1).

Fig. 4
Fig. 4

Comparison between WSB smoothed values and our data for absorption by CO2–N2 and CO2–O2 at 296 K: ●, CO2–N2; ×, CO2–O2.

Fig. 5
Fig. 5

Comparison between various line shape correcting factors δ = ( B 0 obs B 0 calc ) / B 0 obs for CO2–N2: ●, [SS]-[BGPB] χ factor; ×, Cann et al. χ factor.

Fig. 6
Fig. 6

CO2–N2: Deviations at 296 K of the calculated absorption coefficient from experimental value:

Fig. 7
Fig. 7

CO2–N2: Deviations δ at 193 K of the calculated absorption coefficient from experimental value: (a) assuming a T independent form factor; (b) using optimized χ factor given in (d) of Table VI.

Fig. 8
Fig. 8

Optimized χ factors for CO2 broadened with N2 [cases (a), (b), and (d) of Table VI].

Fig. 9
Fig. 9

CO2–O2: Deviations δ of the calculated absorption coefficient from experimental value assuming a χ factor independent of the perturber: (a) χ(O2,σ,296) = χ(N2,σ,296) [(a) of Table VI]; (b) χ(O2,σ,238) = χ(N2,σ,238); (c) χ(O2,σ,193) = χ(N2,σ,193).

Fig. 10
Fig. 10

CO2–O2: Deviations δ using optimized χ factors given in (a) and (c) of Table VII.

Fig. 11
Fig. 11

Optimized χ factors for CO2 broadened with O2 [see (a) and (c) of Table VII].

Tables (7)

Tables Icon

Table I Measurement Range

Tables Icon

Table II Normalized Absorption Coefficient B0(σ,T) in cm−1 amagat−2 at Selected Temperatures for CO2 Broadened with N2

Tables Icon

Table III Normalized Absorption Coefficient B0(σ,T) in cm−1 amagat−2 at Selected Temperatures for CO2 Broadened with O2

Tables Icon

Table IV Uncertainties on the Parameters Sfi, γfi and on Experimental and Calculated Values B 0 obs and B 0 calc

Tables Icon

Table V CO2–N2: Optimized Parameters for the Birnbaum’s Form Factor at 296 and 193 K

Tables Icon

Table VI Optimized χ Form Factors for CO2–N2: (a) 296 K; (b) 296 K; (c) 238 K; (d) 193 K

Tables Icon

Table VII Optimized χ Form Factors for CO2–O2: (a) 296 K; (b) 238 K [χ (O2,σ,238) = χ(N2,σ,238)]; (c) 193 K

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α ( σ ) = f i S f i π γ f i γ f i 2 + ( σ σ f i ) 2 χ ( | σ σ f i | ) ,
α ( σ , P a , P b , T ) 1 L log I 0 I t d a 2 A 0 ( σ , T ) + d a d B B 0 ( σ , T ) ,
γ f i ( T ) = γ f i ( T 0 ) ( T 0 T ) n with T 0 = 296 K .
B 0 ( σ , T ) = f i 1 π σ σ f i S f i 0 γ f i 0 γ f i 02 + ( σ σ f i ) 2 χ ( | σ σ f i | , T ) ,
δ = B 0 obs B 0 calc B 0 obs .
B 0 Air ( σ , T ) = 0 . 79 B 0 N 2 ( σ , T ) + 0 . 21 B 0 O 2 ( σ , T ) .

Metrics