Abstract

An unconventional Fourier transform spectrometer is described which does not require mechanical scanning. The instrument uses a photodiode array as detector and incorporates features whereby the systematic background noise associated with this type of device may be compensated for to give good quality interferograms. Sample spectra are presented to demonstrate the performance of the instrument.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Stroke, A. T. Funkhouser, “Fourier Transform Spectroscopy using Holographic Imaging without Computing and with Stationary Interferometers,” Phys. Lett. 16, 272 (1965).
    [CrossRef]
  2. K. Yoshihara, A. Kitade, “Holographic Spectra using a Triangle Path Interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
    [CrossRef]
  3. K. Kamiya, K. Yoshihara, K. Okada, “Holographic Spectra obtained with Lloyds Mirror,” Jpn. J. Appl. Phys. 7, 1129 (1968).
    [CrossRef]
  4. K. Kamiya, B. Hayashida, K. Okada, K. Yoshihara, “VUV Spectrum obtained by the Holographic Method,” Appl. Opt. 10, 2557 (1971).
    [CrossRef] [PubMed]
  5. K. Yoshihara, K. Nakashima, M. Higuchi, “Holographic Spectra using a Mach-Zender Interferometer,” Jpn. J. Appl. Phys. 15, 1169 (1976).
    [CrossRef]
  6. H. Barnils, J. M. Simon, “Spectral Analysis by Polarisation Interferographs,” Optik 68, 209 (1984).
  7. T. Okamoto, S. Kawata, S. Minami, “Fourier Transform Spectrometer with a Self-Scanned Diode Array,” Appl. Opt. 23, 269 (1984).
    [CrossRef] [PubMed]
  8. L. Mertz, Transformations in Optics (Wiley, New York, 1965).
  9. R. C. Weast, Ed., Handbook of Chemistry and Physics (CRC, Cleveland, 1981–82), p. E317.

1984 (2)

H. Barnils, J. M. Simon, “Spectral Analysis by Polarisation Interferographs,” Optik 68, 209 (1984).

T. Okamoto, S. Kawata, S. Minami, “Fourier Transform Spectrometer with a Self-Scanned Diode Array,” Appl. Opt. 23, 269 (1984).
[CrossRef] [PubMed]

1976 (1)

K. Yoshihara, K. Nakashima, M. Higuchi, “Holographic Spectra using a Mach-Zender Interferometer,” Jpn. J. Appl. Phys. 15, 1169 (1976).
[CrossRef]

1971 (1)

1968 (1)

K. Kamiya, K. Yoshihara, K. Okada, “Holographic Spectra obtained with Lloyds Mirror,” Jpn. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

1967 (1)

K. Yoshihara, A. Kitade, “Holographic Spectra using a Triangle Path Interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

1965 (1)

G. W. Stroke, A. T. Funkhouser, “Fourier Transform Spectroscopy using Holographic Imaging without Computing and with Stationary Interferometers,” Phys. Lett. 16, 272 (1965).
[CrossRef]

Barnils, H.

H. Barnils, J. M. Simon, “Spectral Analysis by Polarisation Interferographs,” Optik 68, 209 (1984).

Funkhouser, A. T.

G. W. Stroke, A. T. Funkhouser, “Fourier Transform Spectroscopy using Holographic Imaging without Computing and with Stationary Interferometers,” Phys. Lett. 16, 272 (1965).
[CrossRef]

Hayashida, B.

Higuchi, M.

K. Yoshihara, K. Nakashima, M. Higuchi, “Holographic Spectra using a Mach-Zender Interferometer,” Jpn. J. Appl. Phys. 15, 1169 (1976).
[CrossRef]

Kamiya, K.

K. Kamiya, B. Hayashida, K. Okada, K. Yoshihara, “VUV Spectrum obtained by the Holographic Method,” Appl. Opt. 10, 2557 (1971).
[CrossRef] [PubMed]

K. Kamiya, K. Yoshihara, K. Okada, “Holographic Spectra obtained with Lloyds Mirror,” Jpn. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

Kawata, S.

Kitade, A.

K. Yoshihara, A. Kitade, “Holographic Spectra using a Triangle Path Interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

Mertz, L.

L. Mertz, Transformations in Optics (Wiley, New York, 1965).

Minami, S.

Nakashima, K.

K. Yoshihara, K. Nakashima, M. Higuchi, “Holographic Spectra using a Mach-Zender Interferometer,” Jpn. J. Appl. Phys. 15, 1169 (1976).
[CrossRef]

Okada, K.

K. Kamiya, B. Hayashida, K. Okada, K. Yoshihara, “VUV Spectrum obtained by the Holographic Method,” Appl. Opt. 10, 2557 (1971).
[CrossRef] [PubMed]

K. Kamiya, K. Yoshihara, K. Okada, “Holographic Spectra obtained with Lloyds Mirror,” Jpn. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

Okamoto, T.

Simon, J. M.

H. Barnils, J. M. Simon, “Spectral Analysis by Polarisation Interferographs,” Optik 68, 209 (1984).

Stroke, G. W.

G. W. Stroke, A. T. Funkhouser, “Fourier Transform Spectroscopy using Holographic Imaging without Computing and with Stationary Interferometers,” Phys. Lett. 16, 272 (1965).
[CrossRef]

Yoshihara, K.

K. Yoshihara, K. Nakashima, M. Higuchi, “Holographic Spectra using a Mach-Zender Interferometer,” Jpn. J. Appl. Phys. 15, 1169 (1976).
[CrossRef]

K. Kamiya, B. Hayashida, K. Okada, K. Yoshihara, “VUV Spectrum obtained by the Holographic Method,” Appl. Opt. 10, 2557 (1971).
[CrossRef] [PubMed]

K. Kamiya, K. Yoshihara, K. Okada, “Holographic Spectra obtained with Lloyds Mirror,” Jpn. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

K. Yoshihara, A. Kitade, “Holographic Spectra using a Triangle Path Interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

Appl. Opt. (2)

Jpn. J. Appl. Phys. (3)

K. Yoshihara, K. Nakashima, M. Higuchi, “Holographic Spectra using a Mach-Zender Interferometer,” Jpn. J. Appl. Phys. 15, 1169 (1976).
[CrossRef]

K. Yoshihara, A. Kitade, “Holographic Spectra using a Triangle Path Interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967).
[CrossRef]

K. Kamiya, K. Yoshihara, K. Okada, “Holographic Spectra obtained with Lloyds Mirror,” Jpn. J. Appl. Phys. 7, 1129 (1968).
[CrossRef]

Optik (1)

H. Barnils, J. M. Simon, “Spectral Analysis by Polarisation Interferographs,” Optik 68, 209 (1984).

Phys. Lett. (1)

G. W. Stroke, A. T. Funkhouser, “Fourier Transform Spectroscopy using Holographic Imaging without Computing and with Stationary Interferometers,” Phys. Lett. 16, 272 (1965).
[CrossRef]

Other (2)

L. Mertz, Transformations in Optics (Wiley, New York, 1965).

R. C. Weast, Ed., Handbook of Chemistry and Physics (CRC, Cleveland, 1981–82), p. E317.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical system of the interferometer.

Fig. 2
Fig. 2

Counterpropagating beams in the same vertical plane of the interferometer.

Fig. 3
Fig. 3

Electronic system for data collection and processing.

Fig. 4
Fig. 4

Data collected from a LED source.

Fig. 5
Fig. 5

Spectrum of the LED.

Fig. 6
Fig. 6

Data collected from a mercury lamp source.

Fig. 7
Fig. 7

Spectrum of the mercury lamp source.

Fig. 8
Fig. 8

Absorption and fluorescence spectra of rhodamine 6G.

Fig. 9
Fig. 9

Flashlamp spectrum (flash duration < 100 nsec).

Fig. 10
Fig. 10

Main spectral lines of xenon (from Ref. 9).

Metrics