Abstract

This paper presents an experimental and theoretical framework to determine parameters of an atmospheric optical communication link using multiple-forward-scattered (MFS) radiation. The study itself simulates in a laboratory environment the various physical factors that are encountered in the actual atmospheric channel. Parameters that affect signal-to-noise fluctuation at the receiver channel, such as multiple scattering of the laser beam off particles in clouds and the atmosphere, sky background, and the effects of direct illumination by the solar flux, are evaluated. Using a GaAlAs laser diode (λ = 0.8486 μm) as a source, the MFS optical channel parameters are evaluated. The system margin using a pulse position modulation format for this laboratory-simulation scattering medium with a quartz-halogen background condition was determined as a function of field of view for various data rates and background noise. For a specific optical depth of the scattering medium, values of the data rates are determined for which communications can be maintained in the presence of direct background noise radiance whereas a negative margin for higher data rates will result in an excessive error rate. Acquisition and high rates transfer between aircraft in low-visibility atmosphere seem to be feasible providing a relatively covert system with high immunity to jamming.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Majumdar, G. Fortescue, “Wide-Beam Atmospheric Optical Communication for Aircraft Application Using Semiconductor Diodes,” Appl. Opt. 22, 2495 (1983).
    [CrossRef] [PubMed]
  2. A. K. Majumdar, “Laboratory-Simulation Experiment for Optical Communication Through Low-Visibility Atmosphere Using a Diode Laser,” IEEE J. Quantum Electron. QE-20, 919 (1984).
    [CrossRef]
  3. W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, J. H. Shapiro, “Atmospheric Optical Propagation—an Integrated Approach,” Opt. Eng. 21, 775 (1982).
    [CrossRef]
  4. W. K. Pratt, Laser Communication Systems (Wiley, New York, 1969).
  5. R. Kingslake, Ed., Applied Optics and Optical Engineering, Vol. 1 (Academic, New York, 1965).
  6. Ref. 4.
  7. W. L. Wolfe, G. J. Zissis, Eds., The Infrared Handbook (IRIA Center, Environmental Research Institute of Michigan for the Office of Naval Research, Washington, D.C., 1978).
  8. M. Katzman, “Laser Space Communication Technology Status,” Proc. Soc. Photo-Opt. Instrum. Eng. 295, 2 (1981).
  9. R. W. Svorec, “Parametric Performance Analysis of Spaceborne Laser Communication Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 295, 66 (1981).
  10. R. W. Svorec, The Aerospace Corp., El Segundo, Calif.; private communication (1984).
  11. Ref. 4.
  12. See, for example, J. R. Kerr, “Microwave-Bandwidth Optical Receiver Systems,” Proc. IEEE 55, 1686 (1967).
    [CrossRef]
  13. K. Y. Lau, C. Harder, A. Yariv, “Direct Modulation of Semiconductor Lasers at f > 10 GHz by Low-Temperature Operation,” Appl. Phys. Lett. 44, 273 (1984).
    [CrossRef]
  14. F. E. Goodwin, Digital Signal Corp., Springfield, Va.; unpublished results and private communication (1983–1984).

1984 (2)

A. K. Majumdar, “Laboratory-Simulation Experiment for Optical Communication Through Low-Visibility Atmosphere Using a Diode Laser,” IEEE J. Quantum Electron. QE-20, 919 (1984).
[CrossRef]

K. Y. Lau, C. Harder, A. Yariv, “Direct Modulation of Semiconductor Lasers at f > 10 GHz by Low-Temperature Operation,” Appl. Phys. Lett. 44, 273 (1984).
[CrossRef]

1983 (1)

1982 (1)

W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, J. H. Shapiro, “Atmospheric Optical Propagation—an Integrated Approach,” Opt. Eng. 21, 775 (1982).
[CrossRef]

1981 (2)

M. Katzman, “Laser Space Communication Technology Status,” Proc. Soc. Photo-Opt. Instrum. Eng. 295, 2 (1981).

R. W. Svorec, “Parametric Performance Analysis of Spaceborne Laser Communication Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 295, 66 (1981).

1967 (1)

See, for example, J. R. Kerr, “Microwave-Bandwidth Optical Receiver Systems,” Proc. IEEE 55, 1686 (1967).
[CrossRef]

Fortescue, G.

Goodwin, F. E.

F. E. Goodwin, Digital Signal Corp., Springfield, Va.; unpublished results and private communication (1983–1984).

Harder, C.

K. Y. Lau, C. Harder, A. Yariv, “Direct Modulation of Semiconductor Lasers at f > 10 GHz by Low-Temperature Operation,” Appl. Phys. Lett. 44, 273 (1984).
[CrossRef]

Jaeger, W. P.

W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, J. H. Shapiro, “Atmospheric Optical Propagation—an Integrated Approach,” Opt. Eng. 21, 775 (1982).
[CrossRef]

Katzman, M.

M. Katzman, “Laser Space Communication Technology Status,” Proc. Soc. Photo-Opt. Instrum. Eng. 295, 2 (1981).

Kerr, J. R.

See, for example, J. R. Kerr, “Microwave-Bandwidth Optical Receiver Systems,” Proc. IEEE 55, 1686 (1967).
[CrossRef]

Lau, K. Y.

K. Y. Lau, C. Harder, A. Yariv, “Direct Modulation of Semiconductor Lasers at f > 10 GHz by Low-Temperature Operation,” Appl. Phys. Lett. 44, 273 (1984).
[CrossRef]

Majumdar, A. K.

A. K. Majumdar, “Laboratory-Simulation Experiment for Optical Communication Through Low-Visibility Atmosphere Using a Diode Laser,” IEEE J. Quantum Electron. QE-20, 919 (1984).
[CrossRef]

A. K. Majumdar, G. Fortescue, “Wide-Beam Atmospheric Optical Communication for Aircraft Application Using Semiconductor Diodes,” Appl. Opt. 22, 2495 (1983).
[CrossRef] [PubMed]

Nakai, J.

W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, J. H. Shapiro, “Atmospheric Optical Propagation—an Integrated Approach,” Opt. Eng. 21, 775 (1982).
[CrossRef]

Nguyen, T. T.

W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, J. H. Shapiro, “Atmospheric Optical Propagation—an Integrated Approach,” Opt. Eng. 21, 775 (1982).
[CrossRef]

Pratt, W. K.

W. K. Pratt, Laser Communication Systems (Wiley, New York, 1969).

Ross, W. S.

W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, J. H. Shapiro, “Atmospheric Optical Propagation—an Integrated Approach,” Opt. Eng. 21, 775 (1982).
[CrossRef]

Shapiro, J. H.

W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, J. H. Shapiro, “Atmospheric Optical Propagation—an Integrated Approach,” Opt. Eng. 21, 775 (1982).
[CrossRef]

Svorec, R. W.

R. W. Svorec, “Parametric Performance Analysis of Spaceborne Laser Communication Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 295, 66 (1981).

R. W. Svorec, The Aerospace Corp., El Segundo, Calif.; private communication (1984).

Yariv, A.

K. Y. Lau, C. Harder, A. Yariv, “Direct Modulation of Semiconductor Lasers at f > 10 GHz by Low-Temperature Operation,” Appl. Phys. Lett. 44, 273 (1984).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Y. Lau, C. Harder, A. Yariv, “Direct Modulation of Semiconductor Lasers at f > 10 GHz by Low-Temperature Operation,” Appl. Phys. Lett. 44, 273 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. K. Majumdar, “Laboratory-Simulation Experiment for Optical Communication Through Low-Visibility Atmosphere Using a Diode Laser,” IEEE J. Quantum Electron. QE-20, 919 (1984).
[CrossRef]

Opt. Eng. (1)

W. S. Ross, W. P. Jaeger, J. Nakai, T. T. Nguyen, J. H. Shapiro, “Atmospheric Optical Propagation—an Integrated Approach,” Opt. Eng. 21, 775 (1982).
[CrossRef]

Proc. IEEE (1)

See, for example, J. R. Kerr, “Microwave-Bandwidth Optical Receiver Systems,” Proc. IEEE 55, 1686 (1967).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

M. Katzman, “Laser Space Communication Technology Status,” Proc. Soc. Photo-Opt. Instrum. Eng. 295, 2 (1981).

R. W. Svorec, “Parametric Performance Analysis of Spaceborne Laser Communication Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 295, 66 (1981).

Other (7)

R. W. Svorec, The Aerospace Corp., El Segundo, Calif.; private communication (1984).

Ref. 4.

W. K. Pratt, Laser Communication Systems (Wiley, New York, 1969).

R. Kingslake, Ed., Applied Optics and Optical Engineering, Vol. 1 (Academic, New York, 1965).

Ref. 4.

W. L. Wolfe, G. J. Zissis, Eds., The Infrared Handbook (IRIA Center, Environmental Research Institute of Michigan for the Office of Naval Research, Washington, D.C., 1978).

F. E. Goodwin, Digital Signal Corp., Springfield, Va.; unpublished results and private communication (1983–1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Signal-to-noise ratio as a function of receiver FOV for a monodisperse and polydisperse medium.

Fig. 3
Fig. 3

Scattered-to-unscattered signal ratio vs FOV of reception for the monodisperse medium.

Fig. 4
Fig. 4

Pulse-position-modulation format.

Fig. 5
Fig. 5

System margin in decibels for low-visibility scattering medium with optical depth, τ = 2.21, and for various data rates and two different background noise radiances.

Fig. 6
Fig. 6

System margin in decibels for τ = 4.23 for various data rates and two different background noise radiances.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

P A = P t ( ρ R / θ T L ) 2 exp ( β a L ) [ 1 + ( θ 0 / θ T ) 2 ] [ 1 + ( θ 0 / θ R ) 2 ] ,
( P A ) u n s = [ P t ( ρ R / θ T L ) 2 ] exp ( β L ) ,
P B = π 2 τ a τ r Δ λ θ R 2 ρ R 2 N ( λ ) ,
P B = π τ a τ r Δ λ Ω s ρ R 2 N ( λ )
P B = π τ a τ r Δ λ ρ R 2 H ( λ )
( P A ) ) scattered ( P A ) unscattered = exp ( ϕ β s L ) [ 1 + 2 3 β s ϕ L θ F 2 θ T 2 ] [ 1 + 2 3 β s ϕ L θ F 2 θ R 2 ] ,
P B E = P F A + ( 1 P D ) , P F A = 1 2 π ξ exp ( ξ 2 / 2 ) ,
P D = 1 2 π ζ exp ( ζ 2 / 2 ) ,
ξ = q T q N 2 ¯ , ζ = q s q T q N 2 ¯ .
( S N ) υ = ξ + ζ = q s q N 2 ¯ .
S N R = [ ( S N ) υ ] 2 .
31 P F A + ( 1 P D ) = 10 6 .
31 P F A = 1 2 × 10 6 = 5 × 10 7 , ( 1 P D ) = 1 2 × 10 6 = 5 × 10 7 .
S N R = ( η 2 h ν B ) P r 2 ( P B + P r + P D ) ,
N b = η ( P B h ν m ) ,
N d = η ( P d h ν m ) .
B = 1 2 τ = M m 2 k .
P r = ( h ν M m 2 η k ) [ ( S N R ) + ( S N R ) 2 + 4 ( N b + N d ) ( k M ) ( S N R ) ] .
( S M ) d B = 10 log P A ( θ R ) P r ( θ R ) .

Metrics