Abstract

This paper discusses the possibilities of recording electrooptic holograms using a TV camera and digital frame storage for applications to hologram interferometry. The technique of reference beam phase stepping is proposed to allow determination of object beam amplitude and phase for every pixel element. The use of binary levels for both picture display and camera readout is discussed along with estimates of computation times.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), pp. 573–578.
  2. K. A. Stetson, “Holographic Vibration Analysis,” Holographic Nondestructive Testing, R. K. Erf, Ed. (Academic, New York, 1974), pp. 208–209.
  3. J. N. Butters, J. A. Leendertz, “Holographic and Video Techniques Applied to Engineering Measurements,” Meas Control 4, 349 (1971).
  4. K. Biedermann, L. Ek, L. Ostland, “A TV Speckle Interferometer,” The Engineering Uses of Coherent Light, E. R. Robertson, Ed. (Cambridge U. P., London, 1976), pp. 219–221.
  5. R. Dändliker, “Heterodyne Holographic Interferometry,” Prog. Opt. 17, 1 (1980).
    [CrossRef]
  6. K. A. Stetson, “The Use of Heterodyne Speckle Photogrammetry to Measure High-Temperature Strain Distributions,” Proc. Soc. Photo-Opt. Instrum. Eng., 370, 46 (1983).
  7. P. Hariharan, B. F. Oreb, N. Brown, “Real-Time Holographic Interferometry: a Microcomputer System for the Measurement of Vector Displacements,” Appl. Opt. 22, 876 (1983).
    [CrossRef] [PubMed]
  8. C. B. Burckhardt, L. H. Enloe, “Television Transmission of Holograms with Reduced Resolution Requirements on the Camera Tube,” Bell Syst. Tech. J. 48, 1529 (1969).
  9. J. E. Berrang, “Television Transmission of Holograms Using a Narrow-band Video Signal,” Bell Syst. Tech. J. 49, 879 (1970).
  10. K. Creath, “Speckle Interferometry Techniques for Motion Sensing,” in Technical Digest, Topical Meeting on Machine Vision (Optical Society of America, Washington, D.C., 1985), paper ThB4.
  11. K. A. Stetson, “A New Design for the Laser Image-Speckle Interferometer,” Opt. Laser Technol. 2, 179 (1970).
    [CrossRef]
  12. K. A. Stetson, “Miscellaneous Topics in Speckle Metrology,” Speckle Metrology, R. K. Erf, Ed. (Academic, New York, 1978), pp. 296–302.

1983 (2)

K. A. Stetson, “The Use of Heterodyne Speckle Photogrammetry to Measure High-Temperature Strain Distributions,” Proc. Soc. Photo-Opt. Instrum. Eng., 370, 46 (1983).

P. Hariharan, B. F. Oreb, N. Brown, “Real-Time Holographic Interferometry: a Microcomputer System for the Measurement of Vector Displacements,” Appl. Opt. 22, 876 (1983).
[CrossRef] [PubMed]

1980 (1)

R. Dändliker, “Heterodyne Holographic Interferometry,” Prog. Opt. 17, 1 (1980).
[CrossRef]

1971 (1)

J. N. Butters, J. A. Leendertz, “Holographic and Video Techniques Applied to Engineering Measurements,” Meas Control 4, 349 (1971).

1970 (2)

J. E. Berrang, “Television Transmission of Holograms Using a Narrow-band Video Signal,” Bell Syst. Tech. J. 49, 879 (1970).

K. A. Stetson, “A New Design for the Laser Image-Speckle Interferometer,” Opt. Laser Technol. 2, 179 (1970).
[CrossRef]

1969 (1)

C. B. Burckhardt, L. H. Enloe, “Television Transmission of Holograms with Reduced Resolution Requirements on the Camera Tube,” Bell Syst. Tech. J. 48, 1529 (1969).

Berrang, J. E.

J. E. Berrang, “Television Transmission of Holograms Using a Narrow-band Video Signal,” Bell Syst. Tech. J. 49, 879 (1970).

Biedermann, K.

K. Biedermann, L. Ek, L. Ostland, “A TV Speckle Interferometer,” The Engineering Uses of Coherent Light, E. R. Robertson, Ed. (Cambridge U. P., London, 1976), pp. 219–221.

Brown, N.

Burckhardt, C. B.

C. B. Burckhardt, L. H. Enloe, “Television Transmission of Holograms with Reduced Resolution Requirements on the Camera Tube,” Bell Syst. Tech. J. 48, 1529 (1969).

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), pp. 573–578.

Butters, J. N.

J. N. Butters, J. A. Leendertz, “Holographic and Video Techniques Applied to Engineering Measurements,” Meas Control 4, 349 (1971).

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), pp. 573–578.

Creath, K.

K. Creath, “Speckle Interferometry Techniques for Motion Sensing,” in Technical Digest, Topical Meeting on Machine Vision (Optical Society of America, Washington, D.C., 1985), paper ThB4.

Dändliker, R.

R. Dändliker, “Heterodyne Holographic Interferometry,” Prog. Opt. 17, 1 (1980).
[CrossRef]

Ek, L.

K. Biedermann, L. Ek, L. Ostland, “A TV Speckle Interferometer,” The Engineering Uses of Coherent Light, E. R. Robertson, Ed. (Cambridge U. P., London, 1976), pp. 219–221.

Enloe, L. H.

C. B. Burckhardt, L. H. Enloe, “Television Transmission of Holograms with Reduced Resolution Requirements on the Camera Tube,” Bell Syst. Tech. J. 48, 1529 (1969).

Hariharan, P.

Leendertz, J. A.

J. N. Butters, J. A. Leendertz, “Holographic and Video Techniques Applied to Engineering Measurements,” Meas Control 4, 349 (1971).

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), pp. 573–578.

Oreb, B. F.

Ostland, L.

K. Biedermann, L. Ek, L. Ostland, “A TV Speckle Interferometer,” The Engineering Uses of Coherent Light, E. R. Robertson, Ed. (Cambridge U. P., London, 1976), pp. 219–221.

Stetson, K. A.

K. A. Stetson, “The Use of Heterodyne Speckle Photogrammetry to Measure High-Temperature Strain Distributions,” Proc. Soc. Photo-Opt. Instrum. Eng., 370, 46 (1983).

K. A. Stetson, “A New Design for the Laser Image-Speckle Interferometer,” Opt. Laser Technol. 2, 179 (1970).
[CrossRef]

K. A. Stetson, “Miscellaneous Topics in Speckle Metrology,” Speckle Metrology, R. K. Erf, Ed. (Academic, New York, 1978), pp. 296–302.

K. A. Stetson, “Holographic Vibration Analysis,” Holographic Nondestructive Testing, R. K. Erf, Ed. (Academic, New York, 1974), pp. 208–209.

Appl. Opt. (1)

Bell Syst. Tech. J. (2)

C. B. Burckhardt, L. H. Enloe, “Television Transmission of Holograms with Reduced Resolution Requirements on the Camera Tube,” Bell Syst. Tech. J. 48, 1529 (1969).

J. E. Berrang, “Television Transmission of Holograms Using a Narrow-band Video Signal,” Bell Syst. Tech. J. 49, 879 (1970).

Meas Control (1)

J. N. Butters, J. A. Leendertz, “Holographic and Video Techniques Applied to Engineering Measurements,” Meas Control 4, 349 (1971).

Opt. Laser Technol. (1)

K. A. Stetson, “A New Design for the Laser Image-Speckle Interferometer,” Opt. Laser Technol. 2, 179 (1970).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

K. A. Stetson, “The Use of Heterodyne Speckle Photogrammetry to Measure High-Temperature Strain Distributions,” Proc. Soc. Photo-Opt. Instrum. Eng., 370, 46 (1983).

Prog. Opt. (1)

R. Dändliker, “Heterodyne Holographic Interferometry,” Prog. Opt. 17, 1 (1980).
[CrossRef]

Other (5)

K. A. Stetson, “Miscellaneous Topics in Speckle Metrology,” Speckle Metrology, R. K. Erf, Ed. (Academic, New York, 1978), pp. 296–302.

K. Biedermann, L. Ek, L. Ostland, “A TV Speckle Interferometer,” The Engineering Uses of Coherent Light, E. R. Robertson, Ed. (Cambridge U. P., London, 1976), pp. 219–221.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), pp. 573–578.

K. A. Stetson, “Holographic Vibration Analysis,” Holographic Nondestructive Testing, R. K. Erf, Ed. (Academic, New York, 1974), pp. 208–209.

K. Creath, “Speckle Interferometry Techniques for Motion Sensing,” in Technical Digest, Topical Meeting on Machine Vision (Optical Society of America, Washington, D.C., 1985), paper ThB4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical arrangement for forming in-line image-plane holograms.

Fig. 2
Fig. 2

Schematic diagram for data flow.

Fig. 3
Fig. 3

Computer simulation for binary recording and display of electrooptic holograms: (a) result of a single exposure; (b)–(e) result of adding (as logical OR) two, three, four, and five subsequent exposures with different illumination to reduce speckles.

Fig. 4
Fig. 4

Memory map for a hypothetical data processing system.

Fig. 5
Fig. 5

Flow charts for hypothetical data processing: (a) to compute Mu, Ms, and Mc; (b) to calculate the reconstruction pixel magnitudes; (c) to calculate the reconstruction pixel phases (to within modulo 360°)

Tables (3)

Tables Icon

Table I Timing of Mu, Ms, and Mc Computations

Tables Icon

Table II Timing to Compute Magnitudes of Reconstruction Pixels

Tables Icon

Table III Timing for Computation of Reconstruction Pixel Phasesa

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

M c x y = 1 N I ( x , y , n ) cos ( θ n ) ,
M s x y = 1 N I ( x , y , n ) sin ( θ n ) ,
M u x y = 1 N I ( x , y , n ) ,
I ( x , y , n ) = I r ( x , y ) + I 0 ( x , y ) + 2 A r ( x , y ) A 0 ( x , y ) cos [ ϕ ( x , y ) + θ n ] ,
1 J sin ( 2 π j / J ) = 1 J cos ( 2 π j / J ) = 1 J cos ( 2 π j / J ) sin ( 2 π j / J ) = 0 , 1 J sin 2 ( 2 π j / J ) = 1 J cos 2 ( 2 π j / J ) = J / 2 , and cos [ ϕ ( x , y ) + θ n ] = cos [ ϕ ( x , y ) ] cos [ θ n ] sin [ ϕ ( x , y ) ] sin [ θ n ] .
M c x y = C ( x , y ) A r ( x , y ) A 0 ( x , y ) cos [ ϕ ( x , y ) ] J ,
M s x y = C ( x , y ) A r ( x , y ) A 0 ( x , y ) sin [ ϕ ( x , y ) ] J ,
M u x y = C ( x , y ) [ I r ( x , y ) + I 0 ( x , y ) ] J ,
( M c x y 2 + M s x y 2 ) 1 / 2 / M u x y = A 0 ( x , y ) / [ 1 + A 0 ( x , y ) / A r ] ,
ϕ ( x , y ) = a t n ( M s x y / M c x y ) .
1 N cos ( 2 π M n / N ) cos ( 2 π n / N ) = N / 2 if M = N ± 1 = 0 otherwise . 1 N sin ( 2 π M n / N ) sin ( 2 π n / N ) = N / 2 if M = N + 1 = 0 otherwise . 1 N cos ( 2 π M n / N ) sin ( 2 π n / N ) = 1 N sin ( 2 π M n / N ) cos ( 2 π n / N ) = 0 .
cos ( ϕ b ϕ a ) = ( M b c M a c + M b s M a s ) / [ ( M b c 2 + M b s 2 ) ( M b c 2 + M b s 2 ) ] 1 / 2 ,
sin ( ϕ b ϕ a ) = ( M b s M a c + M b c M a s ) / [ ( M b c 2 + M b s 2 ) ( M b c 2 + M b s 2 ) ] 1 / 2 ,
I ( x , y , n ) = I r + I 0 ( x , y ) + M [ Ω ( x , y ) ] 2 A r A 0 ( x , y ) cos [ ϕ ( x , y ) + θ n ] ,
( M c x y 2 + M s x y 2 ) / M u x y = I 0 ( x , y ) ,

Metrics