Abstract

Simultaneous photoacoustic spectroscopy is introduced as a convenient and accurate method for the measurement of small absorption line shifts due to the pressure of the surrounding atmosphere. Results are presented for fourteen water vapor lines in the 725-nm spectral region. Rather large pressure shift coefficients of up to −0.040 cm−1/atm are observed, which have to be taken into consideration in remote sensing applications in which the exact positioning on the line center is critical, e.g., differential absorption lidar.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable Laser Measurements of Water Vapor Transitions in the Vicinity of 5 μm,” Chem. Phys. Lett. 19, 524 (1973).
    [CrossRef]
  2. R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapour Absorption Line Parameters,” Mol. Phys. 28, 653 (1974).
    [CrossRef]
  3. L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines, 931–961 nm: Selected Intensities, N2-Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423 (1982).
    [CrossRef]
  4. R. W. Davies, B. A. Oli, “Theoretical Calculations of H2O Linewidths and Pressure Shifts: Comparison of the Anderson Theory with Quantum Many-Body Theory for N2 and Air-Broadened Lines,” J. Quant. Spectrosc. Radiat. Transfer 20, 95 (1978), and references therein.
    [CrossRef]
  5. R. R. Gamache, R. W. Davies, “Theoretical Calculations of N2-Broadened Halfwidths of H2O Using Quantum Fourier Transform Theory,” Appl. Opt. 22, 4013 (1983).
    [CrossRef] [PubMed]
  6. Y-H. Pao, Ed., Optoacoustic Spectroscopy and Detection (Academic, New York, 1977).
  7. B. H. Amstrong, “Spectrum Line Profiles: The Voigt Function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61 (1967).
    [CrossRef]
  8. R. R. Gamache, R. W. Davies, “Theoretical N2, O2-, and Air-Broadened Halfwidths of 16O3 Calculated by Quantum Fourier Transform Theory with Realistic Collision Dynamics,” J. Mol. Spectrosc. (1985), to appear.
  9. J.-Y. Mandin, J. M. Fland, C. Camy-Peyret, G. Guelachvili, “Measurements and Calculations of Self-Broadening Coefficients of Lines Belonging to theν2 Band of H216O,” J. Quant. Spectrosc. Radiat. Transfer 23, 351 (1980).
    [CrossRef]
  10. L. S. Rothman et al., “AFGL Atmospheric Absorption Line Parameters Compilation: 1982 Edition,” Appl. Opt. 22, 2247 (1983).
    [CrossRef] [PubMed]

1985 (1)

R. R. Gamache, R. W. Davies, “Theoretical N2, O2-, and Air-Broadened Halfwidths of 16O3 Calculated by Quantum Fourier Transform Theory with Realistic Collision Dynamics,” J. Mol. Spectrosc. (1985), to appear.

1983 (2)

1982 (1)

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines, 931–961 nm: Selected Intensities, N2-Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423 (1982).
[CrossRef]

1980 (1)

J.-Y. Mandin, J. M. Fland, C. Camy-Peyret, G. Guelachvili, “Measurements and Calculations of Self-Broadening Coefficients of Lines Belonging to theν2 Band of H216O,” J. Quant. Spectrosc. Radiat. Transfer 23, 351 (1980).
[CrossRef]

1978 (1)

R. W. Davies, B. A. Oli, “Theoretical Calculations of H2O Linewidths and Pressure Shifts: Comparison of the Anderson Theory with Quantum Many-Body Theory for N2 and Air-Broadened Lines,” J. Quant. Spectrosc. Radiat. Transfer 20, 95 (1978), and references therein.
[CrossRef]

1974 (1)

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapour Absorption Line Parameters,” Mol. Phys. 28, 653 (1974).
[CrossRef]

1973 (1)

R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable Laser Measurements of Water Vapor Transitions in the Vicinity of 5 μm,” Chem. Phys. Lett. 19, 524 (1973).
[CrossRef]

1967 (1)

B. H. Amstrong, “Spectrum Line Profiles: The Voigt Function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61 (1967).
[CrossRef]

Amstrong, B. H.

B. H. Amstrong, “Spectrum Line Profiles: The Voigt Function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61 (1967).
[CrossRef]

Calawa, A. R.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapour Absorption Line Parameters,” Mol. Phys. 28, 653 (1974).
[CrossRef]

R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable Laser Measurements of Water Vapor Transitions in the Vicinity of 5 μm,” Chem. Phys. Lett. 19, 524 (1973).
[CrossRef]

Camy-Peyret, C.

J.-Y. Mandin, J. M. Fland, C. Camy-Peyret, G. Guelachvili, “Measurements and Calculations of Self-Broadening Coefficients of Lines Belonging to theν2 Band of H216O,” J. Quant. Spectrosc. Radiat. Transfer 23, 351 (1980).
[CrossRef]

Davies, R. W.

R. R. Gamache, R. W. Davies, “Theoretical N2, O2-, and Air-Broadened Halfwidths of 16O3 Calculated by Quantum Fourier Transform Theory with Realistic Collision Dynamics,” J. Mol. Spectrosc. (1985), to appear.

R. R. Gamache, R. W. Davies, “Theoretical Calculations of N2-Broadened Halfwidths of H2O Using Quantum Fourier Transform Theory,” Appl. Opt. 22, 4013 (1983).
[CrossRef] [PubMed]

R. W. Davies, B. A. Oli, “Theoretical Calculations of H2O Linewidths and Pressure Shifts: Comparison of the Anderson Theory with Quantum Many-Body Theory for N2 and Air-Broadened Lines,” J. Quant. Spectrosc. Radiat. Transfer 20, 95 (1978), and references therein.
[CrossRef]

Eng, R. S.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapour Absorption Line Parameters,” Mol. Phys. 28, 653 (1974).
[CrossRef]

R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable Laser Measurements of Water Vapor Transitions in the Vicinity of 5 μm,” Chem. Phys. Lett. 19, 524 (1973).
[CrossRef]

Fland, J. M.

J.-Y. Mandin, J. M. Fland, C. Camy-Peyret, G. Guelachvili, “Measurements and Calculations of Self-Broadening Coefficients of Lines Belonging to theν2 Band of H216O,” J. Quant. Spectrosc. Radiat. Transfer 23, 351 (1980).
[CrossRef]

Gamache, R. R.

R. R. Gamache, R. W. Davies, “Theoretical N2, O2-, and Air-Broadened Halfwidths of 16O3 Calculated by Quantum Fourier Transform Theory with Realistic Collision Dynamics,” J. Mol. Spectrosc. (1985), to appear.

R. R. Gamache, R. W. Davies, “Theoretical Calculations of N2-Broadened Halfwidths of H2O Using Quantum Fourier Transform Theory,” Appl. Opt. 22, 4013 (1983).
[CrossRef] [PubMed]

Gentry, B.

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines, 931–961 nm: Selected Intensities, N2-Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423 (1982).
[CrossRef]

Giver, L. P.

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines, 931–961 nm: Selected Intensities, N2-Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423 (1982).
[CrossRef]

Guelachvili, G.

J.-Y. Mandin, J. M. Fland, C. Camy-Peyret, G. Guelachvili, “Measurements and Calculations of Self-Broadening Coefficients of Lines Belonging to theν2 Band of H216O,” J. Quant. Spectrosc. Radiat. Transfer 23, 351 (1980).
[CrossRef]

Harman, T. C.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapour Absorption Line Parameters,” Mol. Phys. 28, 653 (1974).
[CrossRef]

R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable Laser Measurements of Water Vapor Transitions in the Vicinity of 5 μm,” Chem. Phys. Lett. 19, 524 (1973).
[CrossRef]

Kelley, P. L.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapour Absorption Line Parameters,” Mol. Phys. 28, 653 (1974).
[CrossRef]

R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable Laser Measurements of Water Vapor Transitions in the Vicinity of 5 μm,” Chem. Phys. Lett. 19, 524 (1973).
[CrossRef]

Mandin, J.-Y.

J.-Y. Mandin, J. M. Fland, C. Camy-Peyret, G. Guelachvili, “Measurements and Calculations of Self-Broadening Coefficients of Lines Belonging to theν2 Band of H216O,” J. Quant. Spectrosc. Radiat. Transfer 23, 351 (1980).
[CrossRef]

Mooradian, A.

R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable Laser Measurements of Water Vapor Transitions in the Vicinity of 5 μm,” Chem. Phys. Lett. 19, 524 (1973).
[CrossRef]

Nill, K. W.

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapour Absorption Line Parameters,” Mol. Phys. 28, 653 (1974).
[CrossRef]

Oli, B. A.

R. W. Davies, B. A. Oli, “Theoretical Calculations of H2O Linewidths and Pressure Shifts: Comparison of the Anderson Theory with Quantum Many-Body Theory for N2 and Air-Broadened Lines,” J. Quant. Spectrosc. Radiat. Transfer 20, 95 (1978), and references therein.
[CrossRef]

Rothman, L. S.

Schwemmer, G.

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines, 931–961 nm: Selected Intensities, N2-Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423 (1982).
[CrossRef]

Wilkerson, T. D.

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines, 931–961 nm: Selected Intensities, N2-Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423 (1982).
[CrossRef]

Appl. Opt. (2)

Chem. Phys. Lett. (1)

R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, T. C. Harman, “Tunable Laser Measurements of Water Vapor Transitions in the Vicinity of 5 μm,” Chem. Phys. Lett. 19, 524 (1973).
[CrossRef]

J. Mol. Spectrosc. (1)

R. R. Gamache, R. W. Davies, “Theoretical N2, O2-, and Air-Broadened Halfwidths of 16O3 Calculated by Quantum Fourier Transform Theory with Realistic Collision Dynamics,” J. Mol. Spectrosc. (1985), to appear.

J. Quant. Spectrosc. Radiat. Transfer (4)

J.-Y. Mandin, J. M. Fland, C. Camy-Peyret, G. Guelachvili, “Measurements and Calculations of Self-Broadening Coefficients of Lines Belonging to theν2 Band of H216O,” J. Quant. Spectrosc. Radiat. Transfer 23, 351 (1980).
[CrossRef]

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines, 931–961 nm: Selected Intensities, N2-Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423 (1982).
[CrossRef]

R. W. Davies, B. A. Oli, “Theoretical Calculations of H2O Linewidths and Pressure Shifts: Comparison of the Anderson Theory with Quantum Many-Body Theory for N2 and Air-Broadened Lines,” J. Quant. Spectrosc. Radiat. Transfer 20, 95 (1978), and references therein.
[CrossRef]

B. H. Amstrong, “Spectrum Line Profiles: The Voigt Function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61 (1967).
[CrossRef]

Mol. Phys. (1)

R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, K. W. Nill, “Tunable Diode Laser Measurements of Water Vapour Absorption Line Parameters,” Mol. Phys. 28, 653 (1974).
[CrossRef]

Other (1)

Y-H. Pao, Ed., Optoacoustic Spectroscopy and Detection (Academic, New York, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Photoacoustic signals averaged over 100 shots: —— cell 1, - - - - - - - - - - cell 2 (see Table I). Laser triggered at t = 0. Zero level and amplitude detection in marked regions. Note that the pulse shape is pressure dependent.

Fig. 3
Fig. 3

Photoacoustic spectra of the 13947.233-, 13801.265-, 13801.721-cm−1 water vapor lines: ○, cell 2, pure water vapor; □, cell 1, air broadened. Solid lines are best fits of Voigt line shapes.

Tables (2)

Tables Icon

Table I Parameters of Experimental Setup

Tables Icon

Table II Line Shifts Measured In the 725 nm Region

Metrics