Abstract

A slant path method is used to derive vertical profiles of atmospheric absorption and backscatter coefficients from eleven months of coherent pulsed CO2 Doppler lidar measurements in Huntsville, Ala. Good agreement is found between lidar- and radiosonde-derived absorption profiles. A strong seasonal variation of backscatter and absorption is evident throughout the lower troposphere as well as variations on a wide range of finer temporal and spatial scales. Typical summer and winter backscatter values in the boundary layer fall in the 10−7–10−8- and 10−8–10−9-m−1 sr−1 range, respectively. Measurements beyond the lower troposphere are hampered by modest pulse energy and lidar beam absorption; however, backscatter values as small as 4 × 10−11 m−1 sr−1 occasionally are observed at midtropospheric levels during the winter months when absorption is minimal. A monomodal lognormal backscatter distribution is found within the lower boundary layer; at higher levels, evidence is found of a bimodal lognormal distribution.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Herman, S. R. Browning, “The Effect of Aerosols on the Earth-Atmosphere Albedo,” J. Atmos. Sci. 32, 1430 (1975).
    [CrossRef]
  2. R. M. Huffaker, T. R. Lawrence, M. J. Post, J. T. Priestley, F. F. Hall, R. A. Richter, R. J. Keeler, “Feasibility Studies for a Global Wind Measuring Satellite System (Windsat) Analysis of Simulated Performance,” Appl. Opt. 23, 2523 (1984).
    [CrossRef] [PubMed]
  3. M. Halem, “GCM Simulation Studies on the Relative Importance of Wind Observing Systems for Numerical Weather Prediction,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983), paper TuA1.
  4. R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
    [CrossRef]
  5. J. M. Vaughan, A. A. Woodfield, “Backscatter Measurements in the Atmosphere with a 10-μm Airborne Velocimeter,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 1985), paper WC21.
  6. R. T. Menzies, M. J. Kavaya, P. H. Flamant, D. A. Haner, “Atmospheric Aerosol Backscatter Measurements with a Tunable CO2 Lidar,” Appl. Opt. 23, 2510 (1984).
    [CrossRef] [PubMed]
  7. M. J. Post, “Aerosol Backscattering Profiles at CO2 Wavelengths: the NOAA Data Base,” Appl. Opt. 23, 2507 (1984).
    [CrossRef] [PubMed]
  8. W. D. Jones, “Airborne and Ground-Based Measurement of Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983), paper ThB5.
  9. M. J. Post, “Effects of the Earth’s Atmosphere on a Spaceborne IR Doppler Wind-Sensing System,” Appl. Opt. 18, 2645 (1979).
    [CrossRef] [PubMed]
  10. R. A. McClatchey et al. “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-TR-73-0096 (1973).
  11. J. D. Klett, “Stable Analytical Inversion Solution for Processing Lidar Returns,” Appl. Opt. 20, 211 (1981).
    [CrossRef] [PubMed]
  12. P. M. Hamilton, “Lidar Measurement of Backscatter and Attenuation of Atmospheric Aerosol,” Atmos. Environ. 3, 221 (1969).
    [CrossRef]
  13. J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical Distribution of Aerosol Extinction Cross Section and Inference of Aerosol Imaginary Index in the Troposphere by Lidar Technique,” J. Appl. Meteorol. 19, 426 (1980).
    [CrossRef]
  14. P. B. Russell, J. M. Livingston, “Slant-Lidar Aerosol Extinction Measurements and their Relation to Measured and Calculated Albedo Changes,” J. Climate Appl. Meteorol. 23, 1204 (1984).
    [CrossRef]
  15. M. J. Post, NOAA Environmental Research Laboratories; private communication (1984).
  16. B. J. Rye, “Primary Aberration Contribution to Incoherent Backscatter Heterodyne Lidar Returns,” Appl. Opt. 21, 839 (1982).
    [CrossRef] [PubMed]
  17. R. M. Hardesty, R. J. Keeler, M. J. Post, R. A. Richter, “Characteristics of Coherent Lidar Returns from Calibration Targets and Aerosols,” Appl. Opt. 20, 3763 (1981).
    [CrossRef] [PubMed]
  18. J. Rothermel, C. Kessinger, D. L. Davis, “Dual Doppler Lidar Measurement of Winds in the JAWS Experiment,” J. Atmos. Oceanic Technol. 2, 138 (1985).
    [CrossRef]
  19. R. W. Lee, K. A. Lee, “A Poly-pulse-pair Signal Processor for Coherent Doppler Lidar,” in Technical Digest, Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper WA2.
  20. I. H. Blifford, L. D. Ringer, “The Size and Number Distribution of Aerosols in the Continental Troposphere,” J. Atmos. Sci. 26, 716 (1969).
    [CrossRef]
  21. J. Aitchison, J. A. C. Brown, The Lognormal Distribution (Cambridge U. P., London, 1957).
  22. K. R. Hardy, H. Ottersten, “Radar Investigations of Convective Patterns in the Clear Atmosphere,” J. Atmos. Sci. 26, 666 (1969).
    [CrossRef]
  23. D. R. Grant, “Some Aspects of Convection as Measured from Aircraft,” Q. J. R. Meteorol. Soc. 91, 268 (1965).
    [CrossRef]
  24. M. J. Post, F. F. Hall, R. A. Richter, T. R. Lawrence, “Aerosol Backscattering Profiles at λ = 10.6 μm,” Appl. Opt. 21, 2442 (1982).
    [CrossRef] [PubMed]
  25. R. E. Lopez, “The Lognormal Distribution and Cumulus Cloud Populations,” Mon. Weather Rev. 105, 865 (1977).
    [CrossRef]
  26. D. L. Savoie, J. M. Prospero, “Aerosol Concentration Statistics for the Northern Tropical Atlantic,” J. Geophys. Res. 82, 5954 (1977).
    [CrossRef]

1985

J. Rothermel, C. Kessinger, D. L. Davis, “Dual Doppler Lidar Measurement of Winds in the JAWS Experiment,” J. Atmos. Oceanic Technol. 2, 138 (1985).
[CrossRef]

1984

1982

1981

1980

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical Distribution of Aerosol Extinction Cross Section and Inference of Aerosol Imaginary Index in the Troposphere by Lidar Technique,” J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

1979

1977

R. E. Lopez, “The Lognormal Distribution and Cumulus Cloud Populations,” Mon. Weather Rev. 105, 865 (1977).
[CrossRef]

D. L. Savoie, J. M. Prospero, “Aerosol Concentration Statistics for the Northern Tropical Atlantic,” J. Geophys. Res. 82, 5954 (1977).
[CrossRef]

1975

B. M. Herman, S. R. Browning, “The Effect of Aerosols on the Earth-Atmosphere Albedo,” J. Atmos. Sci. 32, 1430 (1975).
[CrossRef]

1969

P. M. Hamilton, “Lidar Measurement of Backscatter and Attenuation of Atmospheric Aerosol,” Atmos. Environ. 3, 221 (1969).
[CrossRef]

I. H. Blifford, L. D. Ringer, “The Size and Number Distribution of Aerosols in the Continental Troposphere,” J. Atmos. Sci. 26, 716 (1969).
[CrossRef]

K. R. Hardy, H. Ottersten, “Radar Investigations of Convective Patterns in the Clear Atmosphere,” J. Atmos. Sci. 26, 666 (1969).
[CrossRef]

1965

D. R. Grant, “Some Aspects of Convection as Measured from Aircraft,” Q. J. R. Meteorol. Soc. 91, 268 (1965).
[CrossRef]

Aitchison, J.

J. Aitchison, J. A. C. Brown, The Lognormal Distribution (Cambridge U. P., London, 1957).

Barrett, E. W.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Blifford, I. H.

I. H. Blifford, L. D. Ringer, “The Size and Number Distribution of Aerosols in the Continental Troposphere,” J. Atmos. Sci. 26, 716 (1969).
[CrossRef]

Brown, J. A. C.

J. Aitchison, J. A. C. Brown, The Lognormal Distribution (Cambridge U. P., London, 1957).

Browning, S. R.

B. M. Herman, S. R. Browning, “The Effect of Aerosols on the Earth-Atmosphere Albedo,” J. Atmos. Sci. 32, 1430 (1975).
[CrossRef]

Cupp, R. E.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Davis, D. L.

J. Rothermel, C. Kessinger, D. L. Davis, “Dual Doppler Lidar Measurement of Winds in the JAWS Experiment,” J. Atmos. Oceanic Technol. 2, 138 (1985).
[CrossRef]

Derr, V. E.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Flamant, P. H.

Grant, D. R.

D. R. Grant, “Some Aspects of Convection as Measured from Aircraft,” Q. J. R. Meteorol. Soc. 91, 268 (1965).
[CrossRef]

Halem, M.

M. Halem, “GCM Simulation Studies on the Relative Importance of Wind Observing Systems for Numerical Weather Prediction,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983), paper TuA1.

Hall, F. F.

Hamilton, P. M.

P. M. Hamilton, “Lidar Measurement of Backscatter and Attenuation of Atmospheric Aerosol,” Atmos. Environ. 3, 221 (1969).
[CrossRef]

Haner, D. A.

Hardesty, R. M.

Hardy, K. R.

K. R. Hardy, H. Ottersten, “Radar Investigations of Convective Patterns in the Clear Atmosphere,” J. Atmos. Sci. 26, 666 (1969).
[CrossRef]

Herman, B. M.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical Distribution of Aerosol Extinction Cross Section and Inference of Aerosol Imaginary Index in the Troposphere by Lidar Technique,” J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

B. M. Herman, S. R. Browning, “The Effect of Aerosols on the Earth-Atmosphere Albedo,” J. Atmos. Sci. 32, 1430 (1975).
[CrossRef]

Huffaker, R. M.

Jones, W. D.

W. D. Jones, “Airborne and Ground-Based Measurement of Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983), paper ThB5.

Kavaya, M. J.

Keeler, R. J.

Kessinger, C.

J. Rothermel, C. Kessinger, D. L. Davis, “Dual Doppler Lidar Measurement of Winds in the JAWS Experiment,” J. Atmos. Oceanic Technol. 2, 138 (1985).
[CrossRef]

Klett, J. D.

Lawrence, T. R.

Lee, K. A.

R. W. Lee, K. A. Lee, “A Poly-pulse-pair Signal Processor for Coherent Doppler Lidar,” in Technical Digest, Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper WA2.

Lee, R. W.

R. W. Lee, K. A. Lee, “A Poly-pulse-pair Signal Processor for Coherent Doppler Lidar,” in Technical Digest, Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper WA2.

Livingston, J. M.

P. B. Russell, J. M. Livingston, “Slant-Lidar Aerosol Extinction Measurements and their Relation to Measured and Calculated Albedo Changes,” J. Climate Appl. Meteorol. 23, 1204 (1984).
[CrossRef]

Lopez, R. E.

R. E. Lopez, “The Lognormal Distribution and Cumulus Cloud Populations,” Mon. Weather Rev. 105, 865 (1977).
[CrossRef]

McClatchey, R. A.

R. A. McClatchey et al. “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-TR-73-0096 (1973).

Menzies, R. T.

Ottersten, H.

K. R. Hardy, H. Ottersten, “Radar Investigations of Convective Patterns in the Clear Atmosphere,” J. Atmos. Sci. 26, 666 (1969).
[CrossRef]

Post, M. J.

Priestley, J. T.

Prospero, J. M.

D. L. Savoie, J. M. Prospero, “Aerosol Concentration Statistics for the Northern Tropical Atlantic,” J. Geophys. Res. 82, 5954 (1977).
[CrossRef]

Pueschel, R. F.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Reagan, J. A.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical Distribution of Aerosol Extinction Cross Section and Inference of Aerosol Imaginary Index in the Troposphere by Lidar Technique,” J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

Richter, R. A.

Ringer, L. D.

I. H. Blifford, L. D. Ringer, “The Size and Number Distribution of Aerosols in the Continental Troposphere,” J. Atmos. Sci. 26, 716 (1969).
[CrossRef]

Rothermel, J.

J. Rothermel, C. Kessinger, D. L. Davis, “Dual Doppler Lidar Measurement of Winds in the JAWS Experiment,” J. Atmos. Oceanic Technol. 2, 138 (1985).
[CrossRef]

Russell, P. B.

P. B. Russell, J. M. Livingston, “Slant-Lidar Aerosol Extinction Measurements and their Relation to Measured and Calculated Albedo Changes,” J. Climate Appl. Meteorol. 23, 1204 (1984).
[CrossRef]

Rye, B. J.

Savoie, D. L.

D. L. Savoie, J. M. Prospero, “Aerosol Concentration Statistics for the Northern Tropical Atlantic,” J. Geophys. Res. 82, 5954 (1977).
[CrossRef]

Schwiesow, R. L.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Sinclair, P. C.

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

Spinhirne, J. D.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical Distribution of Aerosol Extinction Cross Section and Inference of Aerosol Imaginary Index in the Troposphere by Lidar Technique,” J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

Vaughan, J. M.

J. M. Vaughan, A. A. Woodfield, “Backscatter Measurements in the Atmosphere with a 10-μm Airborne Velocimeter,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 1985), paper WC21.

Woodfield, A. A.

J. M. Vaughan, A. A. Woodfield, “Backscatter Measurements in the Atmosphere with a 10-μm Airborne Velocimeter,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 1985), paper WC21.

Appl. Opt.

Atmos. Environ.

P. M. Hamilton, “Lidar Measurement of Backscatter and Attenuation of Atmospheric Aerosol,” Atmos. Environ. 3, 221 (1969).
[CrossRef]

J. Appl. Meteorol.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical Distribution of Aerosol Extinction Cross Section and Inference of Aerosol Imaginary Index in the Troposphere by Lidar Technique,” J. Appl. Meteorol. 19, 426 (1980).
[CrossRef]

R. L. Schwiesow, R. E. Cupp, V. E. Derr, E. W. Barrett, R. F. Pueschel, P. C. Sinclair, “Aerosol Backscatter Coefficient Profiles Measured at 10.6 μm,” J. Appl. Meteorol. 20, 184 (1981).
[CrossRef]

J. Atmos. Oceanic Technol.

J. Rothermel, C. Kessinger, D. L. Davis, “Dual Doppler Lidar Measurement of Winds in the JAWS Experiment,” J. Atmos. Oceanic Technol. 2, 138 (1985).
[CrossRef]

J. Atmos. Sci.

B. M. Herman, S. R. Browning, “The Effect of Aerosols on the Earth-Atmosphere Albedo,” J. Atmos. Sci. 32, 1430 (1975).
[CrossRef]

I. H. Blifford, L. D. Ringer, “The Size and Number Distribution of Aerosols in the Continental Troposphere,” J. Atmos. Sci. 26, 716 (1969).
[CrossRef]

K. R. Hardy, H. Ottersten, “Radar Investigations of Convective Patterns in the Clear Atmosphere,” J. Atmos. Sci. 26, 666 (1969).
[CrossRef]

J. Climate Appl. Meteorol.

P. B. Russell, J. M. Livingston, “Slant-Lidar Aerosol Extinction Measurements and their Relation to Measured and Calculated Albedo Changes,” J. Climate Appl. Meteorol. 23, 1204 (1984).
[CrossRef]

J. Geophys. Res.

D. L. Savoie, J. M. Prospero, “Aerosol Concentration Statistics for the Northern Tropical Atlantic,” J. Geophys. Res. 82, 5954 (1977).
[CrossRef]

Mon. Weather Rev.

R. E. Lopez, “The Lognormal Distribution and Cumulus Cloud Populations,” Mon. Weather Rev. 105, 865 (1977).
[CrossRef]

Q. J. R. Meteorol. Soc.

D. R. Grant, “Some Aspects of Convection as Measured from Aircraft,” Q. J. R. Meteorol. Soc. 91, 268 (1965).
[CrossRef]

Other

J. Aitchison, J. A. C. Brown, The Lognormal Distribution (Cambridge U. P., London, 1957).

M. J. Post, NOAA Environmental Research Laboratories; private communication (1984).

R. W. Lee, K. A. Lee, “A Poly-pulse-pair Signal Processor for Coherent Doppler Lidar,” in Technical Digest, Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper WA2.

J. M. Vaughan, A. A. Woodfield, “Backscatter Measurements in the Atmosphere with a 10-μm Airborne Velocimeter,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 1985), paper WC21.

M. Halem, “GCM Simulation Studies on the Relative Importance of Wind Observing Systems for Numerical Weather Prediction,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983), paper TuA1.

R. A. McClatchey et al. “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-TR-73-0096 (1973).

W. D. Jones, “Airborne and Ground-Based Measurement of Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983), paper ThB5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic representation of atmospheric vertical plane probed by ground-based lidar. Within each layer, absorption and backscatter coefficients are assumed constant.

Fig. 2
Fig. 2

Comparison between absorption profiles calculated using slant path method (bars) and calculations of gaseous absorption based on measurements of humidity using radiosonde. Included for reference are profiles based on AFGL models of midlatitude summer and winter pressure, temperature, and humidity.

Fig. 3
Fig. 3

Backscatter profile corresponding to Fig. 2 based on lidar measurements and using slant path method. Profile is corrected for absorption obtained from the same method. The slanted line denotes lidar system sensitivity for vertically directed shots in the ideal case of no atmospheric attenuation.

Fig. 4
Fig. 4

Vertical profiles of transmission loss (left) and backscatter measured using two pulse durations on 19 Aug. 1983 in Huntsville, Ala. Slanted lines denote sensitivity. Strong attenuation is typical during summer months.

Fig. 5
Fig. 5

Same as Fig. 4 except for 9 Feb. 1984. Weak absorption is typical during winter months. Note secondary backscatter maximum in 2-μsec profiles not resolved in 8-μsec profiles.

Fig. 6
Fig. 6

Time series of backscatter observations at 800-m height using 2-μsec pulse duration. Variation is typical of other levels within the planetary boundary layer; observations at 8 μsec are comparable at similar heights.

Fig. 7
Fig. 7

Cumulative probability distribution at 2080 m assuming (A) no sampling bias exists and (B) values of missing backscatter data are smaller than the smallest measured value.

Fig. 8
Fig. 8

Same as Fig. 7 except for 160 m. Lognormal behavior in both (A) and (B) indicates no sampling bias existed at this level.

Fig. 9
Fig. 9

Cumulative probability distribution at 480 m. The data set indicates a lognormal distribution comparing log (β) (left ordinate) with β (right ordinate).

Fig. 10
Fig. 10

Cumulative probability distributions at 1120, 1440, and 1760 m suggesting bimodal backscatter distribution. Dominant mode falls around log(β) = −8.0 corresponding to 10−8 m−1 sr−1. The possible intermodal gap occurs around 10−9 m−1 sr−1. The secondary mode is not detected due to weak transmitted pulse energy and beam attenuation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S N = η E h ν λ b b 2 + R 2 β ( π ) c τ 2 10 0 . 2 csc θ 0 z α d z ,
10 log 10 ( S N ) = C + B 10 log 10 ( b 2 + R 2 ) 2 csc θ T z ,
SNR υ = C + B 10 log 10 ( b 2 + z 2 ) 2 T z ,
SNR s = C + B 10 log 10 ( b 2 + z 2 csc 2 ) 2 csc θ T z .
T z = SNR υ SNR s + 10 log 10 ( b 2 + z 2 b 2 + z 2 csc 2 θ ) 2 ( csc θ 1 ) .

Metrics