Abstract

The influence of Doppler broadening by backscattering of air molecules on ground-based H2O DIAL measurement accuracy is described. An equation for calculating the absorption cross section as a function of incident and backscattered laser profiles is given. Analysis of the differential absorption lidar theory shows that measurement errors due to this Doppler broadening arise from the range dependence of the backscatter line shape varying with Mie to Rayleigh backscatter ratio and temperature. Simulation results show that great care has to be taken in the analysis of H2O DIAL measurements when layers with high aerosol concentration, clouds, or strong temperature inversion exist.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Schotland, “Errors in Lidar Measurements of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71 (1974).
    [CrossRef]
  2. E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474 (1979).
    [CrossRef] [PubMed]
  3. G. Megie, “Mesure de la pression et de la température atmosphériques par absorption différentielle lidar: influence de la largeur d’émission laser,” Appl. Opt. 19, 34 (1980).
    [CrossRef] [PubMed]
  4. C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two-Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346 (1982).
    [CrossRef]
  5. C. L. Korb, C. Y. Weng, “The Theory and Correction of Finite Laser Bandwidth Effects in DIAL Experiments,” in Proceedings, Eleventh International Laser Radar Conference, Madison, Wisc. (American Meteorological Society, 1982), Vol. 78.
  6. S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” in Conference Digest, Twelfth International Laser Radar Conference, Aix-en-Provence, France, p. 431 (1984).
  7. R. A. McClatchey, R. V. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-71-0279, Environmental Research Papers 354 (1971).
  8. L. Elterman, “Ultraviolet, Visible and Infrared Attenuation for Altitudes to 50 km,” AFCRL-68-0153, Environmental Research Papers 285 (1968).
  9. T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315 (1979).
    [CrossRef]
  10. B. H. Armstrong, “Spectrum Line Profiles: The Voigt Function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61 (1967).
    [CrossRef]
  11. A. Ansmann, Diplomarbeit, Max-Planck-Institut für Meteorologie, Bundesstrasse 55, D-2000 Hamburg13 (1984).

1982 (1)

C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two-Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346 (1982).
[CrossRef]

1980 (1)

1979 (2)

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315 (1979).
[CrossRef]

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474 (1979).
[CrossRef] [PubMed]

1974 (1)

R. M. Schotland, “Errors in Lidar Measurements of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

1967 (1)

B. H. Armstrong, “Spectrum Line Profiles: The Voigt Function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61 (1967).
[CrossRef]

Ansmann, A.

A. Ansmann, Diplomarbeit, Max-Planck-Institut für Meteorologie, Bundesstrasse 55, D-2000 Hamburg13 (1984).

Armstrong, B. H.

B. H. Armstrong, “Spectrum Line Profiles: The Voigt Function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61 (1967).
[CrossRef]

Browell, E. V.

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474 (1979).
[CrossRef] [PubMed]

S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” in Conference Digest, Twelfth International Laser Radar Conference, Aix-en-Provence, France, p. 431 (1984).

Elterman, L.

L. Elterman, “Ultraviolet, Visible and Infrared Attenuation for Altitudes to 50 km,” AFCRL-68-0153, Environmental Research Papers 285 (1968).

Fenn, R. V.

R. A. McClatchey, R. V. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-71-0279, Environmental Research Papers 354 (1971).

Flamant, P.

S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” in Conference Digest, Twelfth International Laser Radar Conference, Aix-en-Provence, France, p. 431 (1984).

Garing, J. S.

R. A. McClatchey, R. V. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-71-0279, Environmental Research Papers 354 (1971).

Gentry, B.

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315 (1979).
[CrossRef]

Giver, L. P.

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315 (1979).
[CrossRef]

Grew, G.

S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” in Conference Digest, Twelfth International Laser Radar Conference, Aix-en-Provence, France, p. 431 (1984).

Ismail, S.

S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” in Conference Digest, Twelfth International Laser Radar Conference, Aix-en-Provence, France, p. 431 (1984).

Korb, C. L.

C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two-Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346 (1982).
[CrossRef]

C. L. Korb, C. Y. Weng, “The Theory and Correction of Finite Laser Bandwidth Effects in DIAL Experiments,” in Proceedings, Eleventh International Laser Radar Conference, Madison, Wisc. (American Meteorological Society, 1982), Vol. 78.

McClatchey, R. A.

R. A. McClatchey, R. V. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-71-0279, Environmental Research Papers 354 (1971).

McIlrath, T. J.

Megie, G.

G. Megie, “Mesure de la pression et de la température atmosphériques par absorption différentielle lidar: influence de la largeur d’émission laser,” Appl. Opt. 19, 34 (1980).
[CrossRef] [PubMed]

S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” in Conference Digest, Twelfth International Laser Radar Conference, Aix-en-Provence, France, p. 431 (1984).

Schotland, R. M.

R. M. Schotland, “Errors in Lidar Measurements of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

Schwemmer, G.

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315 (1979).
[CrossRef]

Selby, J. E. A.

R. A. McClatchey, R. V. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-71-0279, Environmental Research Papers 354 (1971).

Volz, F. E.

R. A. McClatchey, R. V. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-71-0279, Environmental Research Papers 354 (1971).

Weng, C. Y.

C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two-Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346 (1982).
[CrossRef]

C. L. Korb, C. Y. Weng, “The Theory and Correction of Finite Laser Bandwidth Effects in DIAL Experiments,” in Proceedings, Eleventh International Laser Radar Conference, Madison, Wisc. (American Meteorological Society, 1982), Vol. 78.

Wilkerson, T. D.

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474 (1979).
[CrossRef] [PubMed]

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315 (1979).
[CrossRef]

Appl. Opt. (2)

J. Appl. Meteorol. (2)

C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two-Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346 (1982).
[CrossRef]

R. M. Schotland, “Errors in Lidar Measurements of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315 (1979).
[CrossRef]

B. H. Armstrong, “Spectrum Line Profiles: The Voigt Function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61 (1967).
[CrossRef]

Other (5)

A. Ansmann, Diplomarbeit, Max-Planck-Institut für Meteorologie, Bundesstrasse 55, D-2000 Hamburg13 (1984).

C. L. Korb, C. Y. Weng, “The Theory and Correction of Finite Laser Bandwidth Effects in DIAL Experiments,” in Proceedings, Eleventh International Laser Radar Conference, Madison, Wisc. (American Meteorological Society, 1982), Vol. 78.

S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” in Conference Digest, Twelfth International Laser Radar Conference, Aix-en-Provence, France, p. 431 (1984).

R. A. McClatchey, R. V. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-71-0279, Environmental Research Papers 354 (1971).

L. Elterman, “Ultraviolet, Visible and Infrared Attenuation for Altitudes to 50 km,” AFCRL-68-0153, Environmental Research Papers 285 (1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Errors in the horizontal (1) and vertical (2) ground-based H2O DIAL measurements due to Doppler broadened Rayleigh backscattering for clear (a) and hazy (b) atmosphere with 23- and 5-km ground level visibility, respectively. Dashed lines show measurement uncertainties for the case where Doppler broadened Rayleigh backscattering is neglected in the calculation of the absorption cross sections. Solid lines show measurement uncertainties for the case where errors in the cross-section calculation due to Doppler broadened Rayleigh backscattering are corrected by using Eq. (4).

Fig. 2
Fig. 2

Errors in vertical H2O DIAL measurements for clear atmosphere. Three layers with a thickness of 500 m centered at 1.5, 4, and 8 km and an aerosol concentration 50% higher than the aerosol concentration of the clear atmosphere model were stimulated in (a). Three layers with a thickness of 500 m centered at 1.5, 4, and 8 km and characterized by dT/dR = 2 K/100 m were simulated in (b).

Tables (2)

Tables Icon

Table I Properties of the Model Atmosphere

Tables Icon

Table II H2O Absorption Line and Laser Line Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P i ( R j ) = P 0 · d R R j 2 · β i ( R j ) · exp [ 2 R 0 R j γ i ( r ) d r ] · { β i M ( R j ) β i ( R j ) h i ( υ ) exp [ 2 R 0 R j α ( υ , r ) d r ] d υ + β i R ( R j ) β i ( R j ) h i ( υ ) exp [ R 0 R j α ( υ , r ) d r ] d υ · g i ( υ , R j ) exp [ R 0 R j α ( υ , r ) d r ] d υ } ,
ln [ P 1 ( R 1 ) · P 2 ( R 2 ) P 1 ( R 1 ) · P 2 ( R 1 ) ] = ln [ A 1 ( R ¯ ) A 2 ( R ¯ ) ] + ln [ B 1 ( R 1 ) · B 2 ( R 2 ) B 2 ( R 1 ) · B 1 ( R 2 ) ] = ln [ A 1 ( R ¯ ) A 2 ( R ¯ ) ] + ln { B 1 ( R 1 ) · [ B 2 ( R 1 ) + C 2 ( R 1 ) ] · B 2 ( R ¯ ) B 2 ( R 1 ) · [ B 1 ( R 1 ) + C 1 ( R 1 ) ] · B 1 ( R ¯ ) } ,
A i ( R ¯ ) = h i ( υ ) exp [ R 1 R 2 α ( υ , r ) d r ] d υ , B i ( R j ) = [ β M ( R j ) β ( R j ) h i ( υ ) + β R ( R j ) β ( R j ) g i ( υ , R j ) ] × exp [ R 0 R j α ( υ , r ) d r ] d υ , B i ( R ¯ ) = [ β M ( R 2 ) β ( R 2 ) h i ( υ ) + β R ( R 2 ) β ( R 2 ) g i ( υ , R 2 ) ] × exp [ R 1 R 2 α ( υ , r ) d r ] d υ , C i ( R 1 ) = { [ β M ( R 2 ) β ( R 2 ) β M ( R 1 ) β ( R 1 ) ] h i ( υ ) + β R ( R 2 ) β ( R 2 ) g i ( υ , R 2 ) β R ( R 1 ) β ( R 1 ) g i ( υ , R 1 ) } exp [ R 0 R 1 α ( υ , r ) d r ] d υ , β M , R = β i M , i R , i for on line ( i = 1 ) and off line ( i = 2 ) ,
N ( R ¯ ) = 1 2 [ σ 1 ( R ¯ ) σ 2 ( R ¯ ) · d R ] ln [ P 1 ( R 1 ) · P 2 ( R 2 ) P 1 ( R 2 ) · P 2 ( R 1 ) ] ,
σ i ( R ¯ ) = 1 2 σ i ( υ , R ¯ ) { ( 1 + β M ( R 2 ) β ( R 2 ) ) h i ( υ ) + β R ( R 2 ) β ( R ) g i ( υ , R 2 ) } d υ .

Metrics