Abstract

The design and flight results of a multimode satellite instrument are described. The prime mission is to produce imagery of the earth’s auroral activity with a selectable 30-Å spectral window in the vacuum ultraviolet spectrum ranging from ~1100 to 1900 Å. This instrument, known as AIM (auroral/ionospheric mapper), also functions as a photometer operable at preselected wavelengths with the same spectral window or as a spectrometer scanning the full spectral range. As a part of the AIM sensor there are two fixed wavelength photometers, one at 3914 Å and the other at 6300 Å, each with a 10-Å spectral window. The mechanical, optical, photometric, and electrical design criteria and selections are presented.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. I. Meng, R. E. Huffman, “Ultraviolet Imaging from Space of the Aurora Under Full Sunlight,” Geophys. Res. Lett. 11, 315 (1984).
    [CrossRef]
  2. R. E. Huffman, F. J. LeBlanc, J. C. Larrabee, D. E. Paulsen, “Satellite Vacuum Ultraviolet Airglow and Auroral Observations,” J. Geophys. Res. 85, 2201 (1980).
    [CrossRef]
  3. R. E. Huffman, F. J. LeBlanc, D. E. Paulsen, J. C. Larrabee, “Ultraviolet Horizon Sensing from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 265, 290 (1981).
  4. E. J. Fremouw et al. “The HILAT Program,” Trans. Am. Geophys. Union EDS 64, 163 (1983).
    [CrossRef]
  5. F. W. Schenkel, “An Automatic Self Deployable High Attenuation Light Shade for Spaceborne Sensors,” J. Brit. Interplanet. Soc. 26, 589 (1973).
  6. J. M. Bennett, “Measurement of the rms Roughness, Autocovariance Function and Other Statistical Properties of Optical Surfaces Using a FECO Scanning Interferometer,” Appl. Opt. 15, 2705 (1976).
    [CrossRef] [PubMed]
  7. J. M. Elson, J. M. Bennett, “Relation Between the Angular Dependence of Scattering and the Statistical Properties of Optical Surfaces,” J. Opt. Soc. Am. 69, 31 (1979).
    [CrossRef]
  8. C. Leinert, D. Kluppelberg, “Stray Light Suppression in Optical Space Experiments,” Appl. Opt. 13, 556 (1974).
    [CrossRef] [PubMed]
  9. J. M. Elson, J. M. Bennett, “Vector Scattering Theory,” Opt. Eng. 18, 116 (1979).
    [CrossRef]

1984 (1)

C. I. Meng, R. E. Huffman, “Ultraviolet Imaging from Space of the Aurora Under Full Sunlight,” Geophys. Res. Lett. 11, 315 (1984).
[CrossRef]

1983 (1)

E. J. Fremouw et al. “The HILAT Program,” Trans. Am. Geophys. Union EDS 64, 163 (1983).
[CrossRef]

1981 (1)

R. E. Huffman, F. J. LeBlanc, D. E. Paulsen, J. C. Larrabee, “Ultraviolet Horizon Sensing from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 265, 290 (1981).

1980 (1)

R. E. Huffman, F. J. LeBlanc, J. C. Larrabee, D. E. Paulsen, “Satellite Vacuum Ultraviolet Airglow and Auroral Observations,” J. Geophys. Res. 85, 2201 (1980).
[CrossRef]

1979 (2)

1976 (1)

1974 (1)

1973 (1)

F. W. Schenkel, “An Automatic Self Deployable High Attenuation Light Shade for Spaceborne Sensors,” J. Brit. Interplanet. Soc. 26, 589 (1973).

Bennett, J. M.

Elson, J. M.

Fremouw, E. J.

E. J. Fremouw et al. “The HILAT Program,” Trans. Am. Geophys. Union EDS 64, 163 (1983).
[CrossRef]

Huffman, R. E.

C. I. Meng, R. E. Huffman, “Ultraviolet Imaging from Space of the Aurora Under Full Sunlight,” Geophys. Res. Lett. 11, 315 (1984).
[CrossRef]

R. E. Huffman, F. J. LeBlanc, D. E. Paulsen, J. C. Larrabee, “Ultraviolet Horizon Sensing from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 265, 290 (1981).

R. E. Huffman, F. J. LeBlanc, J. C. Larrabee, D. E. Paulsen, “Satellite Vacuum Ultraviolet Airglow and Auroral Observations,” J. Geophys. Res. 85, 2201 (1980).
[CrossRef]

Kluppelberg, D.

Larrabee, J. C.

R. E. Huffman, F. J. LeBlanc, D. E. Paulsen, J. C. Larrabee, “Ultraviolet Horizon Sensing from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 265, 290 (1981).

R. E. Huffman, F. J. LeBlanc, J. C. Larrabee, D. E. Paulsen, “Satellite Vacuum Ultraviolet Airglow and Auroral Observations,” J. Geophys. Res. 85, 2201 (1980).
[CrossRef]

LeBlanc, F. J.

R. E. Huffman, F. J. LeBlanc, D. E. Paulsen, J. C. Larrabee, “Ultraviolet Horizon Sensing from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 265, 290 (1981).

R. E. Huffman, F. J. LeBlanc, J. C. Larrabee, D. E. Paulsen, “Satellite Vacuum Ultraviolet Airglow and Auroral Observations,” J. Geophys. Res. 85, 2201 (1980).
[CrossRef]

Leinert, C.

Meng, C. I.

C. I. Meng, R. E. Huffman, “Ultraviolet Imaging from Space of the Aurora Under Full Sunlight,” Geophys. Res. Lett. 11, 315 (1984).
[CrossRef]

Paulsen, D. E.

R. E. Huffman, F. J. LeBlanc, D. E. Paulsen, J. C. Larrabee, “Ultraviolet Horizon Sensing from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 265, 290 (1981).

R. E. Huffman, F. J. LeBlanc, J. C. Larrabee, D. E. Paulsen, “Satellite Vacuum Ultraviolet Airglow and Auroral Observations,” J. Geophys. Res. 85, 2201 (1980).
[CrossRef]

Schenkel, F. W.

F. W. Schenkel, “An Automatic Self Deployable High Attenuation Light Shade for Spaceborne Sensors,” J. Brit. Interplanet. Soc. 26, 589 (1973).

Appl. Opt. (2)

Geophys. Res. Lett. (1)

C. I. Meng, R. E. Huffman, “Ultraviolet Imaging from Space of the Aurora Under Full Sunlight,” Geophys. Res. Lett. 11, 315 (1984).
[CrossRef]

J. Brit. Interplanet. Soc. (1)

F. W. Schenkel, “An Automatic Self Deployable High Attenuation Light Shade for Spaceborne Sensors,” J. Brit. Interplanet. Soc. 26, 589 (1973).

J. Geophys. Res. (1)

R. E. Huffman, F. J. LeBlanc, J. C. Larrabee, D. E. Paulsen, “Satellite Vacuum Ultraviolet Airglow and Auroral Observations,” J. Geophys. Res. 85, 2201 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

J. M. Elson, J. M. Bennett, “Vector Scattering Theory,” Opt. Eng. 18, 116 (1979).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. E. Huffman, F. J. LeBlanc, D. E. Paulsen, J. C. Larrabee, “Ultraviolet Horizon Sensing from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 265, 290 (1981).

Trans. Am. Geophys. Union EDS (1)

E. J. Fremouw et al. “The HILAT Program,” Trans. Am. Geophys. Union EDS 64, 163 (1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Auroral ionospheric mapper image scan coverage.

Fig. 2
Fig. 2

Auroral imager.

Fig. 3
Fig. 3

Auroral ionospheric mapper pixel footprint projection as a function of image scan path angle.

Fig. 4
Fig. 4

Telescope–spectrometer–sensor assembly.

Fig. 5
Fig. 5

AIM scan mirror optical readout.

Fig. 6
Fig. 6

Auroral ionospheric mapper block diagram.

Fig. 7
Fig. 7

Auroral ionospheric mapper controller/processor.

Fig. 8
Fig. 8

Fixed-wavelength photometer/illumination sensor optics layout.

Fig. 9
Fig. 9

AIM imager spectral sensitivity.

Fig. 10
Fig. 10

Field of view of the AIM imager in the NADIR position with 1470-Å light.

Fig. 11
Fig. 11

Ultraviolet auroral image at 1356 Å in daytime from APL.

Fig. 12
Fig. 12

Ultraviolet auroral image at 1493 Å in daytime from Kiruna, Sweden. Dotted line indicates terminator with dayside to left.

Fig. 13
Fig. 13

Auroral ionospheric mapper spectrometer scan.

Tables (6)

Tables Icon

Table I Ultraviolet Imager Operational Modes

Tables Icon

Table II Commandable Wavelengths and Sensitivity Calibration

Tables Icon

Table III AIM General Specifications: UV Imager and Fixed-Wavelength Photometer

Tables Icon

Table IV UV Imager Characteristics

Tables Icon

Table V Sequencer Positions

Tables Icon

Table VI Fixed-Wavelength Photometer Characteristics

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n = 10 6 R A 0 Ω C t 4 π ,
n = R S t ,
count = ( mantissa × 2 exp ) + 2 5 ( 2 exp 1 ) .

Metrics