Abstract

Dielectric multilayers consisting of alternating layers of SiO2 and Ta2O5 with a period as short as 42 nm are fabricated by sputtering. Their birefringent properties are analyzed by polarization-dependent etalon characteristics. Principal refractive indices and birefringence are controlled by the layer thickness ratio and are in good agreement with the theory. An extremely large birefringence of Δn = 0.13, close to the theoretical maximum, is achieved. A relatively short period compared to the wavelength of light contributes to low dispersion. These multilayers are potentially useful as artificial birefringent media in integrated optics.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 705–708.
  2. M. Tateda, “Birefringence in a Dielectric with Periodic Structure,” IEEE/OSA J. Lightwave Technol. LT-2, 522 (1984).
    [CrossRef]
  3. L. M. Brekhovskikh, Waves in Layered Media (Academic, London, 1960), pp. 79–86.
  4. A. Yariv, P. Yeh, “Electromagnetic Propagation in Periodic Stratified Media. II. Birefringence, Phase Matching, and X-Ray Lasers,” J. Opt. Soc. Am. 68, 438 (1977).
    [CrossRef]
  5. J. P. van der Ziel, M. Ilegems, R. M. Mikulyak, “Optical Birefringence of Thin GaAs–AlAs multilayer films,” Appl. Phys. Lett. 28, 735 (1976).
    [CrossRef]
  6. D. C. Flanders, “Submicrometer Periodicity Gratings as Artificial Anisotropic Dielectrics,” Appl. Phys. Lett. 42, 492 (1983).
    [CrossRef]
  7. R. C. Enger, S. K. Case, “Optical Elements with Ultrahigh Spatial-Frequency Surface Corrugations,” Appl. Opt. 22, 3220 (1983).
    [CrossRef] [PubMed]
  8. M. Tateda, T. Kimura, “Optical Wave Propagation in Form-Birefringent Media and Waveguides,” IEEE/OSA J. Lightwave Technol. LT-1, 402 (1983).
    [CrossRef]
  9. H. Terui, M. Kobayashi, “Refractive-Index-Adjustable SiO2–Ta2O5 Films for Integrated Optical Circuits,” Appl. Phys. Lett. 32, 666 (1978).
    [CrossRef]
  10. Direct measurement of retardation of multilayers as a Berek rotary compensator is difficult because of this resonance effect (see Ref. 11).
  11. D. A. Holmes, “Wave-Optics Theory of Rotary Compensators,” J. Opt. Soc. Am. 54, 1340 (1964).
    [CrossRef]
  12. If Λ/λ takes larger values, dispersion becomes larger and colored effect is observed. In fact the multilayer film with 190-nm period was slightly colored and acted as a multilayer interference filter.

1984 (1)

M. Tateda, “Birefringence in a Dielectric with Periodic Structure,” IEEE/OSA J. Lightwave Technol. LT-2, 522 (1984).
[CrossRef]

1983 (3)

D. C. Flanders, “Submicrometer Periodicity Gratings as Artificial Anisotropic Dielectrics,” Appl. Phys. Lett. 42, 492 (1983).
[CrossRef]

R. C. Enger, S. K. Case, “Optical Elements with Ultrahigh Spatial-Frequency Surface Corrugations,” Appl. Opt. 22, 3220 (1983).
[CrossRef] [PubMed]

M. Tateda, T. Kimura, “Optical Wave Propagation in Form-Birefringent Media and Waveguides,” IEEE/OSA J. Lightwave Technol. LT-1, 402 (1983).
[CrossRef]

1978 (1)

H. Terui, M. Kobayashi, “Refractive-Index-Adjustable SiO2–Ta2O5 Films for Integrated Optical Circuits,” Appl. Phys. Lett. 32, 666 (1978).
[CrossRef]

1977 (1)

A. Yariv, P. Yeh, “Electromagnetic Propagation in Periodic Stratified Media. II. Birefringence, Phase Matching, and X-Ray Lasers,” J. Opt. Soc. Am. 68, 438 (1977).
[CrossRef]

1976 (1)

J. P. van der Ziel, M. Ilegems, R. M. Mikulyak, “Optical Birefringence of Thin GaAs–AlAs multilayer films,” Appl. Phys. Lett. 28, 735 (1976).
[CrossRef]

1964 (1)

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 705–708.

Brekhovskikh, L. M.

L. M. Brekhovskikh, Waves in Layered Media (Academic, London, 1960), pp. 79–86.

Case, S. K.

Enger, R. C.

Flanders, D. C.

D. C. Flanders, “Submicrometer Periodicity Gratings as Artificial Anisotropic Dielectrics,” Appl. Phys. Lett. 42, 492 (1983).
[CrossRef]

Holmes, D. A.

Ilegems, M.

J. P. van der Ziel, M. Ilegems, R. M. Mikulyak, “Optical Birefringence of Thin GaAs–AlAs multilayer films,” Appl. Phys. Lett. 28, 735 (1976).
[CrossRef]

Kimura, T.

M. Tateda, T. Kimura, “Optical Wave Propagation in Form-Birefringent Media and Waveguides,” IEEE/OSA J. Lightwave Technol. LT-1, 402 (1983).
[CrossRef]

Kobayashi, M.

H. Terui, M. Kobayashi, “Refractive-Index-Adjustable SiO2–Ta2O5 Films for Integrated Optical Circuits,” Appl. Phys. Lett. 32, 666 (1978).
[CrossRef]

Mikulyak, R. M.

J. P. van der Ziel, M. Ilegems, R. M. Mikulyak, “Optical Birefringence of Thin GaAs–AlAs multilayer films,” Appl. Phys. Lett. 28, 735 (1976).
[CrossRef]

Tateda, M.

M. Tateda, “Birefringence in a Dielectric with Periodic Structure,” IEEE/OSA J. Lightwave Technol. LT-2, 522 (1984).
[CrossRef]

M. Tateda, T. Kimura, “Optical Wave Propagation in Form-Birefringent Media and Waveguides,” IEEE/OSA J. Lightwave Technol. LT-1, 402 (1983).
[CrossRef]

Terui, H.

H. Terui, M. Kobayashi, “Refractive-Index-Adjustable SiO2–Ta2O5 Films for Integrated Optical Circuits,” Appl. Phys. Lett. 32, 666 (1978).
[CrossRef]

van der Ziel, J. P.

J. P. van der Ziel, M. Ilegems, R. M. Mikulyak, “Optical Birefringence of Thin GaAs–AlAs multilayer films,” Appl. Phys. Lett. 28, 735 (1976).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 705–708.

Yariv, A.

A. Yariv, P. Yeh, “Electromagnetic Propagation in Periodic Stratified Media. II. Birefringence, Phase Matching, and X-Ray Lasers,” J. Opt. Soc. Am. 68, 438 (1977).
[CrossRef]

Yeh, P.

A. Yariv, P. Yeh, “Electromagnetic Propagation in Periodic Stratified Media. II. Birefringence, Phase Matching, and X-Ray Lasers,” J. Opt. Soc. Am. 68, 438 (1977).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. P. van der Ziel, M. Ilegems, R. M. Mikulyak, “Optical Birefringence of Thin GaAs–AlAs multilayer films,” Appl. Phys. Lett. 28, 735 (1976).
[CrossRef]

D. C. Flanders, “Submicrometer Periodicity Gratings as Artificial Anisotropic Dielectrics,” Appl. Phys. Lett. 42, 492 (1983).
[CrossRef]

H. Terui, M. Kobayashi, “Refractive-Index-Adjustable SiO2–Ta2O5 Films for Integrated Optical Circuits,” Appl. Phys. Lett. 32, 666 (1978).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (2)

M. Tateda, T. Kimura, “Optical Wave Propagation in Form-Birefringent Media and Waveguides,” IEEE/OSA J. Lightwave Technol. LT-1, 402 (1983).
[CrossRef]

M. Tateda, “Birefringence in a Dielectric with Periodic Structure,” IEEE/OSA J. Lightwave Technol. LT-2, 522 (1984).
[CrossRef]

J. Opt. Soc. Am. (2)

A. Yariv, P. Yeh, “Electromagnetic Propagation in Periodic Stratified Media. II. Birefringence, Phase Matching, and X-Ray Lasers,” J. Opt. Soc. Am. 68, 438 (1977).
[CrossRef]

D. A. Holmes, “Wave-Optics Theory of Rotary Compensators,” J. Opt. Soc. Am. 54, 1340 (1964).
[CrossRef]

Other (4)

If Λ/λ takes larger values, dispersion becomes larger and colored effect is observed. In fact the multilayer film with 190-nm period was slightly colored and acted as a multilayer interference filter.

Direct measurement of retardation of multilayers as a Berek rotary compensator is difficult because of this resonance effect (see Ref. 11).

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 705–708.

L. M. Brekhovskikh, Waves in Layered Media (Academic, London, 1960), pp. 79–86.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic geometry of a periodic multilayer on a substrate: n1 = 2.2 (Ta2O5) and n2 = ns = 1.5 (SiO2).

Fig. 2
Fig. 2

Principal refractive indices no and ne and birefringence Δn vs normalized layer thickness f1. Curves are theoretical values for n1 = 2.2 and n2 = 1.5. The dotted curve is Δn(k) for Λ/λ = 0.3. Symbols are experimental results at around λ = 640 nm.

Fig. 3
Fig. 3

Experimental arrangement for etalon characteristic measurements. Polarizer P selects either Eo (ordinary wave) or Ee (extraordinary wave).

Fig. 4
Fig. 4

Typical transmission characteristics of etalon at incident angle α. Arrows indicate the twentieth resonance. The vertical scale is different for each curve.

Fig. 5
Fig. 5

Dispersion of refractive index no.

Tables (2)

Tables Icon

Table I Deposition Time and Dimensions of Multilayers at the Film Edge and the Film Center (in Parentheses)

Tables Icon

Table II Experimental Results for Multilayers 1 and 2; no, ne, Δn, and d are Evaluated from Measured Resonant Wavelength λ(α,20)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n o = ( f 1 n 1 2 + f 2 n 2 2 ) 1 / 2 ( for the ordinary wave ) ,
n e = ( f 1 n 1 2 + f 2 n 2 2 ) 1 / 2 ( for the extraordinary wave ) .
n o ( k ) = n o [ 1 + ( k Λ ) 2 D n o 2 ] ,
n e ( k ) = n e [ 1 + ( k Λ ) 2 D n o 2 n e 4 n 1 4 n 2 4 ] , Δ n ( k ) = Δ n + ( k Λ ) 2 D ( n o 1 n o 2 n e 5 n 1 4 n 2 4 ) ,
λ o ( α , m ) = 4 n o d cos θ o / m ,
λ e ( α , m ) = 4 n o d cos θ e / m ,
n o sin θ o = n e sin θ e = sin α .
n o = sin α / { 1 [ λ o ( α , m ) / λ o ( 0 , m ) ] 2 } 1 / 2 ,
n e = sin α / { 1 [ λ e ( α , m ) / λ o ( 0 , m ) ] 2 } 1 / 2 ,
d = m λ o ( 0 , m ) / 4 n o .

Metrics