Abstract

The lengths and the thermal expansion values of the glass ceramic Zerodur show a reversible dependence on the thermal history within two temperature intervals. Typical effects associated with this dependence are, for example, isothermal length changes within and permanent length changes below the temperature intervals. It is assumed that relaxation causes the observed effects. The phenomena in the upper temperature range from 130°C to 300°C are related to the MgO content. The reversibility of the relaxation effects allows adjustment for lengths and thermal expansion values by appropriate cooling processes.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Bennett, “An Absolute Interferometric Dilatometer,” J. Phys. E 10, 525 (1977).
    [CrossRef]
  2. W. Gorski, “Längenänderung von Zerodur,” Jahresbericht Physikalisch Technische Bundesanstalt, Braunschweig, 159 (1978).
  3. S. F. Jacobs, S. C. Johnston, G. A. Hansen, “Expansion Hysteresis upon Thermal Cycling of Zerodur,” Appl. Opt. 23, 3014 (1984).
    [CrossRef] [PubMed]
  4. J. J. Shaffer, H. E. Bennett, “Effect of Thermal Cycling on Dimensional Stability of Zerodur and ULE,” Appl. Opt. 23, 2852 (1984).
    [CrossRef] [PubMed]
  5. G. W. Scherer, “Use of the Adam-Gibbs Equation in Analyses of Structural Relaxation,” Am. Ceram. Soc. 67, 504 (1984).
    [CrossRef]
  6. H. Rötger, “Vorausberechnung der Eispunktsveränderungen bei Thermometern auf Grund von kurzfristigen Messungen der elastischen Nachwirkung an dünnen Stäben der Thermometer-gläser,” Silikattechnik 7, 496 (1956).
  7. H. Rötger, “Neuere Erkenntnisse über das Relaxationsverhalten von Gläsern,” Silikattechnik 10, 57 (1959).
  8. W. Press, B. Renker, H. Schulz, H. Böhm, “Neutron Scattering Study of the One-Dimensional Ionic Conductor β-Eu-cryptite,” Phys. Rev. B 21, 1250 (1980).
    [CrossRef]
  9. H. Schulz, G. M. Muchow, W. Hoffmann, G. Bayer, “X-Ray Study of Mg–Al Silicate High-Quartz Phases,” Z. Kristallogr. 133, 91 (1971).
    [CrossRef]
  10. W. Roye, “Mischkristallbildung und thermisches Aus-dehnungsverhalten der β-Eukryptite in dem System MgAl2Si2O8–ZnAl2Si2O8–Li2Al2Si2O8,” Diplom-Arbeit, T. H. Aachen (1976).
  11. Prospekt Schott Glaswerke Mainz, “Zerodur Glaskeramik” (1982).
  12. E. Greil, “Die künstliche Alterung von Glaserzeugnissen,” G-I-T Fachzeitschrift fur das Laboratorium, Heft10, 1163 (1970).

1984

1980

W. Press, B. Renker, H. Schulz, H. Böhm, “Neutron Scattering Study of the One-Dimensional Ionic Conductor β-Eu-cryptite,” Phys. Rev. B 21, 1250 (1980).
[CrossRef]

1977

S. J. Bennett, “An Absolute Interferometric Dilatometer,” J. Phys. E 10, 525 (1977).
[CrossRef]

1971

H. Schulz, G. M. Muchow, W. Hoffmann, G. Bayer, “X-Ray Study of Mg–Al Silicate High-Quartz Phases,” Z. Kristallogr. 133, 91 (1971).
[CrossRef]

1959

H. Rötger, “Neuere Erkenntnisse über das Relaxationsverhalten von Gläsern,” Silikattechnik 10, 57 (1959).

1956

H. Rötger, “Vorausberechnung der Eispunktsveränderungen bei Thermometern auf Grund von kurzfristigen Messungen der elastischen Nachwirkung an dünnen Stäben der Thermometer-gläser,” Silikattechnik 7, 496 (1956).

Bayer, G.

H. Schulz, G. M. Muchow, W. Hoffmann, G. Bayer, “X-Ray Study of Mg–Al Silicate High-Quartz Phases,” Z. Kristallogr. 133, 91 (1971).
[CrossRef]

Bennett, H. E.

Bennett, S. J.

S. J. Bennett, “An Absolute Interferometric Dilatometer,” J. Phys. E 10, 525 (1977).
[CrossRef]

Böhm, H.

W. Press, B. Renker, H. Schulz, H. Böhm, “Neutron Scattering Study of the One-Dimensional Ionic Conductor β-Eu-cryptite,” Phys. Rev. B 21, 1250 (1980).
[CrossRef]

Glaswerke Mainz, Prospekt Schott

Prospekt Schott Glaswerke Mainz, “Zerodur Glaskeramik” (1982).

Gorski, W.

W. Gorski, “Längenänderung von Zerodur,” Jahresbericht Physikalisch Technische Bundesanstalt, Braunschweig, 159 (1978).

Greil, E.

E. Greil, “Die künstliche Alterung von Glaserzeugnissen,” G-I-T Fachzeitschrift fur das Laboratorium, Heft10, 1163 (1970).

Hansen, G. A.

Hoffmann, W.

H. Schulz, G. M. Muchow, W. Hoffmann, G. Bayer, “X-Ray Study of Mg–Al Silicate High-Quartz Phases,” Z. Kristallogr. 133, 91 (1971).
[CrossRef]

Jacobs, S. F.

Johnston, S. C.

Muchow, G. M.

H. Schulz, G. M. Muchow, W. Hoffmann, G. Bayer, “X-Ray Study of Mg–Al Silicate High-Quartz Phases,” Z. Kristallogr. 133, 91 (1971).
[CrossRef]

Press, W.

W. Press, B. Renker, H. Schulz, H. Böhm, “Neutron Scattering Study of the One-Dimensional Ionic Conductor β-Eu-cryptite,” Phys. Rev. B 21, 1250 (1980).
[CrossRef]

Renker, B.

W. Press, B. Renker, H. Schulz, H. Böhm, “Neutron Scattering Study of the One-Dimensional Ionic Conductor β-Eu-cryptite,” Phys. Rev. B 21, 1250 (1980).
[CrossRef]

Rötger, H.

H. Rötger, “Neuere Erkenntnisse über das Relaxationsverhalten von Gläsern,” Silikattechnik 10, 57 (1959).

H. Rötger, “Vorausberechnung der Eispunktsveränderungen bei Thermometern auf Grund von kurzfristigen Messungen der elastischen Nachwirkung an dünnen Stäben der Thermometer-gläser,” Silikattechnik 7, 496 (1956).

Roye, W.

W. Roye, “Mischkristallbildung und thermisches Aus-dehnungsverhalten der β-Eukryptite in dem System MgAl2Si2O8–ZnAl2Si2O8–Li2Al2Si2O8,” Diplom-Arbeit, T. H. Aachen (1976).

Scherer, G. W.

G. W. Scherer, “Use of the Adam-Gibbs Equation in Analyses of Structural Relaxation,” Am. Ceram. Soc. 67, 504 (1984).
[CrossRef]

Schulz, H.

W. Press, B. Renker, H. Schulz, H. Böhm, “Neutron Scattering Study of the One-Dimensional Ionic Conductor β-Eu-cryptite,” Phys. Rev. B 21, 1250 (1980).
[CrossRef]

H. Schulz, G. M. Muchow, W. Hoffmann, G. Bayer, “X-Ray Study of Mg–Al Silicate High-Quartz Phases,” Z. Kristallogr. 133, 91 (1971).
[CrossRef]

Shaffer, J. J.

Am. Ceram. Soc.

G. W. Scherer, “Use of the Adam-Gibbs Equation in Analyses of Structural Relaxation,” Am. Ceram. Soc. 67, 504 (1984).
[CrossRef]

Appl. Opt.

J. Phys. E

S. J. Bennett, “An Absolute Interferometric Dilatometer,” J. Phys. E 10, 525 (1977).
[CrossRef]

Phys. Rev. B

W. Press, B. Renker, H. Schulz, H. Böhm, “Neutron Scattering Study of the One-Dimensional Ionic Conductor β-Eu-cryptite,” Phys. Rev. B 21, 1250 (1980).
[CrossRef]

Silikattechnik

H. Rötger, “Vorausberechnung der Eispunktsveränderungen bei Thermometern auf Grund von kurzfristigen Messungen der elastischen Nachwirkung an dünnen Stäben der Thermometer-gläser,” Silikattechnik 7, 496 (1956).

H. Rötger, “Neuere Erkenntnisse über das Relaxationsverhalten von Gläsern,” Silikattechnik 10, 57 (1959).

Z. Kristallogr.

H. Schulz, G. M. Muchow, W. Hoffmann, G. Bayer, “X-Ray Study of Mg–Al Silicate High-Quartz Phases,” Z. Kristallogr. 133, 91 (1971).
[CrossRef]

Other

W. Roye, “Mischkristallbildung und thermisches Aus-dehnungsverhalten der β-Eukryptite in dem System MgAl2Si2O8–ZnAl2Si2O8–Li2Al2Si2O8,” Diplom-Arbeit, T. H. Aachen (1976).

Prospekt Schott Glaswerke Mainz, “Zerodur Glaskeramik” (1982).

E. Greil, “Die künstliche Alterung von Glaserzeugnissen,” G-I-T Fachzeitschrift fur das Laboratorium, Heft10, 1163 (1970).

W. Gorski, “Längenänderung von Zerodur,” Jahresbericht Physikalisch Technische Bundesanstalt, Braunschweig, 159 (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Coefficient of thermal expansion (CTE) of Zerodur between 0 and 1000 K.

Fig. 2
Fig. 2

Variation of the coefficient of thermal expansion CTE (0 to +50°C) of Zerodur—primary annealing at 0.1 K/min—as a function of the initial temperature of a secondary cooling in open air to room temperature.

Fig. 3
Fig. 3

Variation of the coefficient of thermal expansion CTE (0/50°C) as a function of the cooling rate from 320°C to room temperature, normalized to a cooling rate of 0.1 K/min.

Fig. 4
Fig. 4

Thermal length contraction of Zerodur for three cooling rates from 300 to 20°C.

Fig. 5
Fig. 5

Isothermal change of length of Zerodur at temperatures between 100 and 300°C. Length change Δ(Δl/l) after 90-min holding at any given temperature: a, after previous cooling from 400 to 20°C with a rate of 1.5 K/h; b, after previous thermal shock from 400 to 20°C in free air (4-mm diam rod). Approximately 20 min were needed for heating from room temperature and thermal equilibration.

Fig. 6
Fig. 6

Rate-dependent length difference (RDLD) after rates of 6 K/h and fast cooling in free air from 300°C of different glass ceramics as a function of the MgO content.

Fig. 7
Fig. 7

Hysteresis in the course of relative length change Δl/l during a thermal cycling process of Zerodur; temperature rate = 1.25 K/min.

Fig. 8
Fig. 8

Hystersis in the course of relative length change Δl/l during a thermal cycling process of Zerodur (temperature rate = 1.25 K/min) with isothermal one-h holdings at 20, −10, and −40°C in cooling and heating, starting temperature +100°C.

Fig. 9
Fig. 9

Isothermal change of relative length of Zerodur at −30°C after cooling from +100°C to the said temperature at 0.5 and 5 K/min

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ( CTE 0 / 50 ) = 2 . 5 × 10 8 log 10 ( Δ R K / min ) .

Metrics