Abstract

A bichromatic nondispersive acoustooptic deflector was recently described. A new system, relying on a slightly different principle, is proposed here. It allows simple glass lenses to be used for the chromatic compensation instead of the dispersive crystal-glass compound ones needed in the previous version. Moreover, the new system is tunable for any arbitrary pair of wavelengths. A practical system has been designed and the experimental results agree very closely with the theoretical predictions.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Gazalet, C. Bruneel, R. Torguet, G. Thomin, B. Non-gaillard, “Bichromatic Nondispersive Acoustooptic Deflector,” Appl. Opt. 23, 2192 (1984).
    [Crossref] [PubMed]
  2. A. B. Bathia, W. J. Noble, “Diffraction of Light by Ultrasonic Waves,” Proc. R. Soc. London Ser. A 220, 356 (1953).
    [Crossref]
  3. I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason. SU-23, 1 (1976).
  4. E. I. Gordon, “A Review of Acoustooptical Deflection and Modulation Devices,” Proc. IEEE 54, 1391 (1966).
    [Crossref]
  5. J. A. Kusters, D. A. Wilson, D. L. Hammond, “Optimum Crystal Orientation for Acoustically Tuned Optical Filters,” J. Opt. Soc. Am. 64, 434 (1974).
    [Crossref]
  6. T. Yano, A. Watanabe, “Acoustooptic TeO2 Tunable Filter Using Far-Off-Axis Anisotropic Bragg Diffraction,” Appl. Opt. 15, 2250 (1976).
    [Crossref] [PubMed]
  7. R. W. Dixon, “Acoustic Diffraction of Light in Anisotropic Media,” IEEE J. Quantum Electron. QE-3, 85 (1967).
    [Crossref]
  8. M. G. Gazalet, G. Waxin, J. M. Rouvaen, R. Torguet, E. Bridoux, “Independant Acoustooptic Modulation of the Two Wavelengths of a Bichromatic Light Beam,” Appl. Opt. 23, 674 (1984).
    [Crossref] [PubMed]

1984 (2)

1976 (2)

T. Yano, A. Watanabe, “Acoustooptic TeO2 Tunable Filter Using Far-Off-Axis Anisotropic Bragg Diffraction,” Appl. Opt. 15, 2250 (1976).
[Crossref] [PubMed]

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason. SU-23, 1 (1976).

1974 (1)

1967 (1)

R. W. Dixon, “Acoustic Diffraction of Light in Anisotropic Media,” IEEE J. Quantum Electron. QE-3, 85 (1967).
[Crossref]

1966 (1)

E. I. Gordon, “A Review of Acoustooptical Deflection and Modulation Devices,” Proc. IEEE 54, 1391 (1966).
[Crossref]

1953 (1)

A. B. Bathia, W. J. Noble, “Diffraction of Light by Ultrasonic Waves,” Proc. R. Soc. London Ser. A 220, 356 (1953).
[Crossref]

Bathia, A. B.

A. B. Bathia, W. J. Noble, “Diffraction of Light by Ultrasonic Waves,” Proc. R. Soc. London Ser. A 220, 356 (1953).
[Crossref]

Bridoux, E.

Bruneel, C.

Chang, I. C.

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason. SU-23, 1 (1976).

Dixon, R. W.

R. W. Dixon, “Acoustic Diffraction of Light in Anisotropic Media,” IEEE J. Quantum Electron. QE-3, 85 (1967).
[Crossref]

Gazalet, M. G.

Gordon, E. I.

E. I. Gordon, “A Review of Acoustooptical Deflection and Modulation Devices,” Proc. IEEE 54, 1391 (1966).
[Crossref]

Hammond, D. L.

Kusters, J. A.

Noble, W. J.

A. B. Bathia, W. J. Noble, “Diffraction of Light by Ultrasonic Waves,” Proc. R. Soc. London Ser. A 220, 356 (1953).
[Crossref]

Non-gaillard, B.

Rouvaen, J. M.

Thomin, G.

Torguet, R.

Watanabe, A.

Waxin, G.

Wilson, D. A.

Yano, T.

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

R. W. Dixon, “Acoustic Diffraction of Light in Anisotropic Media,” IEEE J. Quantum Electron. QE-3, 85 (1967).
[Crossref]

IEEE Trans. Sonics Ultrason. (1)

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason. SU-23, 1 (1976).

J. Opt. Soc. Am. (1)

Proc. IEEE (1)

E. I. Gordon, “A Review of Acoustooptical Deflection and Modulation Devices,” Proc. IEEE 54, 1391 (1966).
[Crossref]

Proc. R. Soc. London Ser. A (1)

A. B. Bathia, W. J. Noble, “Diffraction of Light by Ultrasonic Waves,” Proc. R. Soc. London Ser. A 220, 356 (1953).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical setup used for the new compensation system.

Fig. 2
Fig. 2

Parameters for evaluation of optical aberration.

Fig. 3
Fig. 3

Typical text trichromatic projection result.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

υ = Φ 2 [ x Φ 1 e ( x + Φ 1 ) ] ( Φ 2 e ) ( x + Φ 1 ) + x Φ 1 .
k 1 Φ 1 Φ 2 x 2 + k 2 [ x Φ 1 e ( x + Φ 1 ) ] 2 = 0 ,
k i = δ Φ i Φ i / δ λ λ ,
k i = δ n i n i 1 / δ λ λ > 0 ,
θ λ f υ ,
δ Y Y = δ λ λ ,
δ γ γ = δ λ λ .
γ = Φ 1 Φ 2 ( Φ 2 e ) ( Φ 1 + x ) + x Φ 1 ,
k 1 x ( e Φ 2 ) + k 2 [ e ( Φ 1 + x ) Φ 1 x ] = ( Φ 2 e ) ( Φ 1 + x ) + x Φ 1 .
k 1 = k 2 = k ( say ) ,
Φ 2 = Φ 1 .
Φ 1 = ± Φ ( say ) ,
e 0 + = e 0 = Φ / k , x 0 + = Φ , x 0 = 1 1 + 2 k Φ , γ 0 + = 1 , γ 0 = 1 + 2 k 1 2 k , υ 0 + = Φ , υ 0 = 1 1 2 k Φ . }
N = π 2 λ L θ max ,
| H i Φ i | < 0 , 1 .
Φ 0 + > k Φ
N opt + = π 200 · k 1 + k · Φ λ ,
a + = Φ 0 + [ 1 k 2 k · Φ 0 + Φ 1 ] , L + = Φ 0 + 10 , θ max + = k 10 ( 1 + k ) · Φ Φ 0 + , }
N opt = π 200 · k ( 1 + k ) 1 + 2 k · Φ λ
N = N opt · Φ 0 / Φ Φ 0 Φ + k ( 1 + k ) ( 1 + 2 k ) ,
a = Φ 0 2 2 Φ ( 1 k ) ( 1 + 2 k ) k Φ 0 2 1 k 1 + 2 k , L = Φ 0 10 ( 1 + k ) , θ max = k 10 ( 1 + 2 k ) · 1 Φ 0 Φ + k ( 1 + k ) ( 1 + 2 k ) ,
l Φ = Φ 0 2 Φ 2 · ( 1 k ) ( 1 + 2 k ) 2 k + Φ 0 Φ · 3 + k 2 ( 1 + k ) + ( 1 + k ) k ( 1 + 2 k ) ,
N + = N opt + 169 , N = 0.93 N opt 160 .

Metrics