Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Kaufmann, “On the Numerical Processing of Speckle Photograph Fringes,” Opt. Laser Technol. 12, 207 (1980).
    [CrossRef]
  2. C. S. Vikram, K. Vedam, “Speckle Photography of Lateral Sinusoidal Vibrations: Error Due to Varying Halo Intensity,” Appl. Opt. 20, 3388 (1981).
    [CrossRef] [PubMed]
  3. C. S. Vikram, “Error in Speckle Photography of Lateral Sinusoidal Vibrations: a Simple Analytical Solution,” Appl. Opt. 21, 1710 (1982).
    [CrossRef] [PubMed]
  4. C. S. Vikram, “Simple Approach to Process Speckle-Photography Data,” Opt. Lett. 7, 374 (1982).
    [CrossRef] [PubMed]
  5. C. S. Vikram, “Analysis of Young's Fringes in Speckle Photography: Generalized Square Imaging Aperture,” Appl. Phys. B 31, 221 (1983).
    [CrossRef]
  6. C. S. Vikram, K. Vedam, “Processing Speckle Photography Data: Circular Imaging Aperture,” Appl. Opt. 22, 653 (1983).
    [CrossRef] [PubMed]
  7. C. S. Vikram, K. Vedam, “Selective Counting Path of Young's Fringes in Speckle Photography for Eliminating Diffraction Halo Effects,” Appl. Opt. 22, 2242 (1983).
    [CrossRef] [PubMed]
  8. C. S. Vikram, “Interpretation of Young's Fringes in Speckle Photography for Lateral Vibration Analysis: Imaging with a Circular Aperture,” Optik 65, 263 (1983).
  9. G. H. Kaufmann, “Digital Analysis of Speckle Photography Fringes: Processing of Experimental Data,” Appl. Opt. 21, 3411 (1982).
    [CrossRef] [PubMed]
  10. G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, “An Electro-Optical Read-Out System for Analysis of Speckle Photographs,” J. Phys. E 13, 579 (1980).
    [CrossRef]
  11. B. Ineichen, P. Eglin, R. Daendliker, “Hybrid Optical and Electronic Image Processing for Strain Measurements by Speckle Photography,” Appl. Opt. 19, 2191 (1980).
    [CrossRef] [PubMed]
  12. D. W. Robinson, “Automatic Fringe Analysis with a Computer Image-Processing System,” Appl. Opt. 22, 2169 (1983).
    [CrossRef] [PubMed]
  13. R. Meynart, “Diffraction Halo in Speckle Photography,” Appl. Opt. 23, 2235 (1984).
    [CrossRef] [PubMed]
  14. G. H. Kaufmann, “Numerical Processing of Speckle Photography Data by Fourier Transform,” Appl. Opt. 20, 4277 (1981).
    [CrossRef] [PubMed]

1984 (1)

1983 (5)

1982 (3)

1981 (2)

1980 (3)

G. H. Kaufmann, “On the Numerical Processing of Speckle Photograph Fringes,” Opt. Laser Technol. 12, 207 (1980).
[CrossRef]

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, “An Electro-Optical Read-Out System for Analysis of Speckle Photographs,” J. Phys. E 13, 579 (1980).
[CrossRef]

B. Ineichen, P. Eglin, R. Daendliker, “Hybrid Optical and Electronic Image Processing for Strain Measurements by Speckle Photography,” Appl. Opt. 19, 2191 (1980).
[CrossRef] [PubMed]

Daendliker, R.

Eglin, P.

Ennos, A. E.

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, “An Electro-Optical Read-Out System for Analysis of Speckle Photographs,” J. Phys. E 13, 579 (1980).
[CrossRef]

Gale, B.

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, “An Electro-Optical Read-Out System for Analysis of Speckle Photographs,” J. Phys. E 13, 579 (1980).
[CrossRef]

Ineichen, B.

Kaufmann, G. H.

G. H. Kaufmann, “Digital Analysis of Speckle Photography Fringes: Processing of Experimental Data,” Appl. Opt. 21, 3411 (1982).
[CrossRef] [PubMed]

G. H. Kaufmann, “Numerical Processing of Speckle Photography Data by Fourier Transform,” Appl. Opt. 20, 4277 (1981).
[CrossRef] [PubMed]

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, “An Electro-Optical Read-Out System for Analysis of Speckle Photographs,” J. Phys. E 13, 579 (1980).
[CrossRef]

G. H. Kaufmann, “On the Numerical Processing of Speckle Photograph Fringes,” Opt. Laser Technol. 12, 207 (1980).
[CrossRef]

Meynart, R.

Pugh, D. J.

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, “An Electro-Optical Read-Out System for Analysis of Speckle Photographs,” J. Phys. E 13, 579 (1980).
[CrossRef]

Robinson, D. W.

Vedam, K.

Vikram, C. S.

Appl. Opt. (9)

Appl. Phys. B (1)

C. S. Vikram, “Analysis of Young's Fringes in Speckle Photography: Generalized Square Imaging Aperture,” Appl. Phys. B 31, 221 (1983).
[CrossRef]

J. Phys. E (1)

G. H. Kaufmann, A. E. Ennos, B. Gale, D. J. Pugh, “An Electro-Optical Read-Out System for Analysis of Speckle Photographs,” J. Phys. E 13, 579 (1980).
[CrossRef]

Opt. Laser Technol. (1)

G. H. Kaufmann, “On the Numerical Processing of Speckle Photograph Fringes,” Opt. Laser Technol. 12, 207 (1980).
[CrossRef]

Opt. Lett. (1)

Optik (1)

C. S. Vikram, “Interpretation of Young's Fringes in Speckle Photography for Lateral Vibration Analysis: Imaging with a Circular Aperture,” Optik 65, 263 (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Normalized irradiance for a pattern of four fringes and υ = 1. Solid and dashed lines represent, respectively, I2−D(n) and I1−D(n). The same representation is used in subsequent figures.

Fig. 2
Fig. 2

Normalized irradiance for a pattern of four fringes and υ = 0.55.

Fig. 3
Fig. 3

Relative fringe shift calculated from fringe maxima for patterns of four, six, eight, and ten fringes.

Fig. 4
Fig. 4

Relative fringe shift calculated from fringe minima for the same fringe patterns of Fig. 3.

Fig. 5
Fig. 5

Modulus of discrete Fourier transform for a pattern of four fringes and υ = 1.

Fig. 6
Fig. 6

Modulus of discrete Fourier transform for a pattern of four fringes and υ = 0.55.

Fig. 7
Fig. 7

Relative fringe shift calculated from Fourier transform for the same fringe patterns of Fig. 3.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = [ 1 υ 1 + υ + 2 υ 1 + υ cos 2 ( π x / g ) ] I 0 ( x , y ) ,
I 0 ( x , y ) = ( 2 π ) 2 [ cos 1 ρ ρ ( 1 ρ 2 ) 1 / 2 ] 2 ,

Metrics