Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Warnatz, “The Mechanism of High Temperature Combustion of Propane and Butane,” Combust. Sci. Tech. 34, 177 (1983).
    [CrossRef]
  2. C. J. Jachimowski, “Chemical Kinetic Reaction Mechanism for the Combustion of Propane,” Combust. Flame 55, 213 (1984).
    [CrossRef]
  3. J. A. Sell, “Quantitative Photothermal Deflection Spectroscopy in a Flowing Stream of Gas,” Appl. Opt. 23, 1586 (1984).
    [CrossRef] [PubMed]
  4. J. A. McMordie, G. W. Sentance, “CO2 Laser Radiation Absorption in Propane,” J. Phys. D 10, L127 (1977).
    [CrossRef]
  5. O. V. Achasov, R. I. Soloukhin, N. A. Fomin, “Resonance (10.6 μ) Absorption of Propane Heated in a Shock Wave,” Zh. Prikl. Spektrosk. 28, 642 (1977).

1984

C. J. Jachimowski, “Chemical Kinetic Reaction Mechanism for the Combustion of Propane,” Combust. Flame 55, 213 (1984).
[CrossRef]

J. A. Sell, “Quantitative Photothermal Deflection Spectroscopy in a Flowing Stream of Gas,” Appl. Opt. 23, 1586 (1984).
[CrossRef] [PubMed]

1983

J. Warnatz, “The Mechanism of High Temperature Combustion of Propane and Butane,” Combust. Sci. Tech. 34, 177 (1983).
[CrossRef]

1977

J. A. McMordie, G. W. Sentance, “CO2 Laser Radiation Absorption in Propane,” J. Phys. D 10, L127 (1977).
[CrossRef]

O. V. Achasov, R. I. Soloukhin, N. A. Fomin, “Resonance (10.6 μ) Absorption of Propane Heated in a Shock Wave,” Zh. Prikl. Spektrosk. 28, 642 (1977).

Achasov, O. V.

O. V. Achasov, R. I. Soloukhin, N. A. Fomin, “Resonance (10.6 μ) Absorption of Propane Heated in a Shock Wave,” Zh. Prikl. Spektrosk. 28, 642 (1977).

Fomin, N. A.

O. V. Achasov, R. I. Soloukhin, N. A. Fomin, “Resonance (10.6 μ) Absorption of Propane Heated in a Shock Wave,” Zh. Prikl. Spektrosk. 28, 642 (1977).

Jachimowski, C. J.

C. J. Jachimowski, “Chemical Kinetic Reaction Mechanism for the Combustion of Propane,” Combust. Flame 55, 213 (1984).
[CrossRef]

McMordie, J. A.

J. A. McMordie, G. W. Sentance, “CO2 Laser Radiation Absorption in Propane,” J. Phys. D 10, L127 (1977).
[CrossRef]

Sell, J. A.

Sentance, G. W.

J. A. McMordie, G. W. Sentance, “CO2 Laser Radiation Absorption in Propane,” J. Phys. D 10, L127 (1977).
[CrossRef]

Soloukhin, R. I.

O. V. Achasov, R. I. Soloukhin, N. A. Fomin, “Resonance (10.6 μ) Absorption of Propane Heated in a Shock Wave,” Zh. Prikl. Spektrosk. 28, 642 (1977).

Warnatz, J.

J. Warnatz, “The Mechanism of High Temperature Combustion of Propane and Butane,” Combust. Sci. Tech. 34, 177 (1983).
[CrossRef]

Appl. Opt.

Combust. Flame

C. J. Jachimowski, “Chemical Kinetic Reaction Mechanism for the Combustion of Propane,” Combust. Flame 55, 213 (1984).
[CrossRef]

Combust. Sci. Tech.

J. Warnatz, “The Mechanism of High Temperature Combustion of Propane and Butane,” Combust. Sci. Tech. 34, 177 (1983).
[CrossRef]

J. Phys. D

J. A. McMordie, G. W. Sentance, “CO2 Laser Radiation Absorption in Propane,” J. Phys. D 10, L127 (1977).
[CrossRef]

Zh. Prikl. Spektrosk.

O. V. Achasov, R. I. Soloukhin, N. A. Fomin, “Resonance (10.6 μ) Absorption of Propane Heated in a Shock Wave,” Zh. Prikl. Spektrosk. 28, 642 (1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

(a) Photothermal deflection spectrum of 1% propane-nitrogen mixture in arbitrary units obtained using a laser fluence of 0.16 J/cm 2; (b) absorption coefficients measured by photoacoustic spectroscopy obtained using a laser fluence of 1 × 10−3 J/cm 2. Curve a has been normalized so that the intensity of the point at 924.97 cm−1 is the same as that in curve b and is shown displaced upward for ease of comparison.

Tables (1)

Tables Icon

Table I Absorption Coefficients of Propane–Nitrogen

Metrics