Abstract

A recent method for predicting light scattering by random aggregates of particles is experimentally examined. This approximate method is here tested in terms of its ability to predict the effects of aggregation of latex spheres of five different sizes on nine different transmitted and scattered light fluxes. In each case two degrees of aggregation were used. For an aggregated sample, each photometric quantity was measured and compared to its counterpart for an unaggregated one. The degrees of aggregation of the samples were estimated microscopically. These data were used with the method to calculate theoretical photometric effects of aggregation. The predictions are found to agree approximately with experimental findings. The results support the method.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Mandelbrot, Fractals, Form, Change, and Dimension (Freeman, San Francisco, 1977).
  2. F. Family, D. P. Landau, Eds., “Kinetics of Aggregation and Gelation, in Proceedings International Topical Conference on Kinetics of Aggregation and Gelation, 2–4 Apr. 1984, Athens, Ga. (North-Holland, Amsterdam, 1984).
  3. G. V. R. Born, “Aggregation of Blood Platelets by Adenosine Diphosphate and its Reversal,” Nature London 194, 927 (1962).
    [Crossref]
  4. G. V. R. Born, M. Hume, “Effect of the Numbers and Sizes of Platelet Aggregates on the Optical Density of Plasma,” Nature London 215, 1027 (1967).
    [Crossref] [PubMed]
  5. F. Michal, G. V. R. Born, “Effect of the Rapid Shape Change of Platelets on Transmission and Scattering of Light Through Plasma,” Nature London, 231, 220 (1971).
  6. D. A. Deranleau, D. Dubler, C. Rathen, E. F. Luscher, “Transient Kinetics of the Rapid Shape Change of Unstirred Human Platelets Stimulated with ADP,” Proc. Natl. Acad. Sci. USA 79, 7297 (1982).
    [Crossref] [PubMed]
  7. J. G. Milton, M. M. Frojmovic, “Turbidometric Evaluations of Platelet Activation: Relative Contributions of Measured Shape Change, Volume, and Early Aggregation,” J. Pharmacol. Methods 9, 101 (1983).
    [Crossref] [PubMed]
  8. R. A. Haworth, D. R. Hunter, “The Ca-2+ Induced Membrane Transition in Mitochrondria II. Nature of the Ca-2+ Trigger Site,” Arch. Biochem. Biophys. 195, 460 (1979).
    [Crossref] [PubMed]
  9. G. Oster, D. P. Riley, “Scattering from Isotropic Colloidal and Macromolecular Systems,” Acta Crystallogr. 5, 1 (1952).
    [Crossref]
  10. G. Oster, D. P. Riley, “Scattering from Cylindrically Symmetric Systems,” Acta Crystallogr 5, 272 (1952).
    [Crossref]
  11. C. Wipplier, A. J. De Vries, H. Benoit, “Etude par Diffusion de la Lumiere d’un Latex de Chlorure de Polyvinyle et de sa Floculation,” in I.U.P.A.C. Sym. Macromol. Wiesbaden, Germany IIIC8 (Verlag Chemie, Weinheim, 1959).
  12. P. Latimer, “Light Scattering and Absorption as Methods of Studying Cell Population Parameters,” Ann. Rev. Biophys. Bioeng. 11, 129 (1982).
    [Crossref]
  13. P. Latimer, F. Wamble, “Light Scattering by Aggregates of Large Colloidal Particles,” Appl. Opt. 21, 2447 (1982).
    [Crossref] [PubMed]
  14. P. Latimer, “Blood Platelet Aggregometry: Predicted Effects of Aggregation, Photometer Geometry, and Multiple Scattering,” Appl. Opt. 22, 1136 (1983).
    [Crossref] [PubMed]
  15. J. Gregory, “Turbidity Fluxuations in Flowing Systems,” J. Colloid Interface Sci. 105, 357 (1985); also personal communication (University College London, Dept. Civil & Municipal Engineering).
    [Crossref]
  16. M. Kerker, “The Optics of Colloidal Silver, Something Old and Something New,” J. Colloid Interface Sci. 105, 297 (1985).
    [Crossref]
  17. M. S. Bowen, M. L. Broide, R. J. Cohen, “The Kinematics of Floculation,” J. Colloid Interface Sci. 105, 605 (1985).
    [Crossref]
  18. R. O. Gumprecht, C. M. Sliepcevich, “Scattering of Light by Large Spherical Particles,” J. Phys. Chem. 57, 90 (1953).
    [Crossref]
  19. P. Latimer, “Dependence of Extinction Efficiency of Spherical Scatterers on Photometer Geometry,” J. Opt. Soc. Am. 62, 208 (1972).
    [Crossref]
  20. C. F. Bohren, G. Koh, “Forward Scattering Corrected Extinction by Nonspherical Particles,” Appl. Opt. 24, 1023 (1985).
    [Crossref] [PubMed]
  21. P. Latimer, “Determination of Diffractor Size and Shape from Diffracted Light,” Appl. Opt. 17, 2162 (1978).
    [Crossref] [PubMed]
  22. B. E. Pyle, A. Brunsting, P. Latimer, “Detection of the Vacuole of Yeast Cells in Suspension by Transmittance Radiometry,” Appl. Opt. 18, 3615 (1979).
    [Crossref] [PubMed]
  23. P. H. Latimer, “Particle Sizing with a Laser Transmittance Photometer and the Mie Theory,” IEEE J. Quantum Electron. QE-20, 1529 (1984).
    [Crossref]
  24. P. Latimer, R. Roberts, K. Bijlani, “The Size of Aspherical or Inhomogeneous Particles in Suspension as Determined with a Transmittance Photometer,” J. Colloid Interface Sci. 105, 410 (1985).
    [Crossref]
  25. P. Latimer, “The Influence of Photometer Design on Optical-Conformational Changes,” J. Theor. Biol. 51, 1 (1975).
    [Crossref] [PubMed]
  26. A. L. Aden, M. Kerker, “Scattering of Electromagnetic Waves from Two Concentric Spheres,” J. Appl. Phys. 22, 1242 (1951).
    [Crossref]
  27. A. Brunsting, “Light Scattering from Mammalian Cells,” Dissertation, U. New Mexico (1972).
  28. P. Latimer, P. Barber, “Scattering by Ellipsoids of Revelation—A Comparison of Theoretical Methods,” J. Colloid Interface Sci. 63, 310 (1978).
    [Crossref]
  29. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  30. M. Kerker, D. D. Cooke, H. Chew, P. J. McNulty, “Light Scattering by Structured Spheres,” J. Opt. Soc. Am. 68, 592 (1978).
    [Crossref]
  31. F. D. Bryant, P. Latimer, “Optical Efficiencies of Large Particles of Arbitrary Shape and Orientation,” J. Colloid Interface Sci. 30, 291 (1969).
    [Crossref]
  32. P. Latimer, “Light Scattering by a Homogeneous Sphere with Radial Projections,” Appl. Opt. 23, 442 (1984).
    [Crossref] [PubMed]
  33. P. Latimer, “Light Scattering by a Structured Particle: The Homogeneous Sphere with Holes,” Appl. Opt. 23, 1844 (1984).
    [Crossref] [PubMed]

1985 (5)

J. Gregory, “Turbidity Fluxuations in Flowing Systems,” J. Colloid Interface Sci. 105, 357 (1985); also personal communication (University College London, Dept. Civil & Municipal Engineering).
[Crossref]

M. Kerker, “The Optics of Colloidal Silver, Something Old and Something New,” J. Colloid Interface Sci. 105, 297 (1985).
[Crossref]

M. S. Bowen, M. L. Broide, R. J. Cohen, “The Kinematics of Floculation,” J. Colloid Interface Sci. 105, 605 (1985).
[Crossref]

C. F. Bohren, G. Koh, “Forward Scattering Corrected Extinction by Nonspherical Particles,” Appl. Opt. 24, 1023 (1985).
[Crossref] [PubMed]

P. Latimer, R. Roberts, K. Bijlani, “The Size of Aspherical or Inhomogeneous Particles in Suspension as Determined with a Transmittance Photometer,” J. Colloid Interface Sci. 105, 410 (1985).
[Crossref]

1984 (3)

1983 (2)

P. Latimer, “Blood Platelet Aggregometry: Predicted Effects of Aggregation, Photometer Geometry, and Multiple Scattering,” Appl. Opt. 22, 1136 (1983).
[Crossref] [PubMed]

J. G. Milton, M. M. Frojmovic, “Turbidometric Evaluations of Platelet Activation: Relative Contributions of Measured Shape Change, Volume, and Early Aggregation,” J. Pharmacol. Methods 9, 101 (1983).
[Crossref] [PubMed]

1982 (3)

D. A. Deranleau, D. Dubler, C. Rathen, E. F. Luscher, “Transient Kinetics of the Rapid Shape Change of Unstirred Human Platelets Stimulated with ADP,” Proc. Natl. Acad. Sci. USA 79, 7297 (1982).
[Crossref] [PubMed]

P. Latimer, “Light Scattering and Absorption as Methods of Studying Cell Population Parameters,” Ann. Rev. Biophys. Bioeng. 11, 129 (1982).
[Crossref]

P. Latimer, F. Wamble, “Light Scattering by Aggregates of Large Colloidal Particles,” Appl. Opt. 21, 2447 (1982).
[Crossref] [PubMed]

1979 (2)

R. A. Haworth, D. R. Hunter, “The Ca-2+ Induced Membrane Transition in Mitochrondria II. Nature of the Ca-2+ Trigger Site,” Arch. Biochem. Biophys. 195, 460 (1979).
[Crossref] [PubMed]

B. E. Pyle, A. Brunsting, P. Latimer, “Detection of the Vacuole of Yeast Cells in Suspension by Transmittance Radiometry,” Appl. Opt. 18, 3615 (1979).
[Crossref] [PubMed]

1978 (3)

1975 (1)

P. Latimer, “The Influence of Photometer Design on Optical-Conformational Changes,” J. Theor. Biol. 51, 1 (1975).
[Crossref] [PubMed]

1972 (1)

1971 (1)

F. Michal, G. V. R. Born, “Effect of the Rapid Shape Change of Platelets on Transmission and Scattering of Light Through Plasma,” Nature London, 231, 220 (1971).

1969 (1)

F. D. Bryant, P. Latimer, “Optical Efficiencies of Large Particles of Arbitrary Shape and Orientation,” J. Colloid Interface Sci. 30, 291 (1969).
[Crossref]

1967 (1)

G. V. R. Born, M. Hume, “Effect of the Numbers and Sizes of Platelet Aggregates on the Optical Density of Plasma,” Nature London 215, 1027 (1967).
[Crossref] [PubMed]

1962 (1)

G. V. R. Born, “Aggregation of Blood Platelets by Adenosine Diphosphate and its Reversal,” Nature London 194, 927 (1962).
[Crossref]

1953 (1)

R. O. Gumprecht, C. M. Sliepcevich, “Scattering of Light by Large Spherical Particles,” J. Phys. Chem. 57, 90 (1953).
[Crossref]

1952 (2)

G. Oster, D. P. Riley, “Scattering from Isotropic Colloidal and Macromolecular Systems,” Acta Crystallogr. 5, 1 (1952).
[Crossref]

G. Oster, D. P. Riley, “Scattering from Cylindrically Symmetric Systems,” Acta Crystallogr 5, 272 (1952).
[Crossref]

1951 (1)

A. L. Aden, M. Kerker, “Scattering of Electromagnetic Waves from Two Concentric Spheres,” J. Appl. Phys. 22, 1242 (1951).
[Crossref]

Aden, A. L.

A. L. Aden, M. Kerker, “Scattering of Electromagnetic Waves from Two Concentric Spheres,” J. Appl. Phys. 22, 1242 (1951).
[Crossref]

Barber, P.

P. Latimer, P. Barber, “Scattering by Ellipsoids of Revelation—A Comparison of Theoretical Methods,” J. Colloid Interface Sci. 63, 310 (1978).
[Crossref]

Benoit, H.

C. Wipplier, A. J. De Vries, H. Benoit, “Etude par Diffusion de la Lumiere d’un Latex de Chlorure de Polyvinyle et de sa Floculation,” in I.U.P.A.C. Sym. Macromol. Wiesbaden, Germany IIIC8 (Verlag Chemie, Weinheim, 1959).

Bijlani, K.

P. Latimer, R. Roberts, K. Bijlani, “The Size of Aspherical or Inhomogeneous Particles in Suspension as Determined with a Transmittance Photometer,” J. Colloid Interface Sci. 105, 410 (1985).
[Crossref]

Bohren, C. F.

Born, G. V. R.

F. Michal, G. V. R. Born, “Effect of the Rapid Shape Change of Platelets on Transmission and Scattering of Light Through Plasma,” Nature London, 231, 220 (1971).

G. V. R. Born, M. Hume, “Effect of the Numbers and Sizes of Platelet Aggregates on the Optical Density of Plasma,” Nature London 215, 1027 (1967).
[Crossref] [PubMed]

G. V. R. Born, “Aggregation of Blood Platelets by Adenosine Diphosphate and its Reversal,” Nature London 194, 927 (1962).
[Crossref]

Bowen, M. S.

M. S. Bowen, M. L. Broide, R. J. Cohen, “The Kinematics of Floculation,” J. Colloid Interface Sci. 105, 605 (1985).
[Crossref]

Broide, M. L.

M. S. Bowen, M. L. Broide, R. J. Cohen, “The Kinematics of Floculation,” J. Colloid Interface Sci. 105, 605 (1985).
[Crossref]

Brunsting, A.

Bryant, F. D.

F. D. Bryant, P. Latimer, “Optical Efficiencies of Large Particles of Arbitrary Shape and Orientation,” J. Colloid Interface Sci. 30, 291 (1969).
[Crossref]

Chew, H.

Cohen, R. J.

M. S. Bowen, M. L. Broide, R. J. Cohen, “The Kinematics of Floculation,” J. Colloid Interface Sci. 105, 605 (1985).
[Crossref]

Cooke, D. D.

De Vries, A. J.

C. Wipplier, A. J. De Vries, H. Benoit, “Etude par Diffusion de la Lumiere d’un Latex de Chlorure de Polyvinyle et de sa Floculation,” in I.U.P.A.C. Sym. Macromol. Wiesbaden, Germany IIIC8 (Verlag Chemie, Weinheim, 1959).

Deranleau, D. A.

D. A. Deranleau, D. Dubler, C. Rathen, E. F. Luscher, “Transient Kinetics of the Rapid Shape Change of Unstirred Human Platelets Stimulated with ADP,” Proc. Natl. Acad. Sci. USA 79, 7297 (1982).
[Crossref] [PubMed]

Dubler, D.

D. A. Deranleau, D. Dubler, C. Rathen, E. F. Luscher, “Transient Kinetics of the Rapid Shape Change of Unstirred Human Platelets Stimulated with ADP,” Proc. Natl. Acad. Sci. USA 79, 7297 (1982).
[Crossref] [PubMed]

Frojmovic, M. M.

J. G. Milton, M. M. Frojmovic, “Turbidometric Evaluations of Platelet Activation: Relative Contributions of Measured Shape Change, Volume, and Early Aggregation,” J. Pharmacol. Methods 9, 101 (1983).
[Crossref] [PubMed]

Gregory, J.

J. Gregory, “Turbidity Fluxuations in Flowing Systems,” J. Colloid Interface Sci. 105, 357 (1985); also personal communication (University College London, Dept. Civil & Municipal Engineering).
[Crossref]

Gumprecht, R. O.

R. O. Gumprecht, C. M. Sliepcevich, “Scattering of Light by Large Spherical Particles,” J. Phys. Chem. 57, 90 (1953).
[Crossref]

Haworth, R. A.

R. A. Haworth, D. R. Hunter, “The Ca-2+ Induced Membrane Transition in Mitochrondria II. Nature of the Ca-2+ Trigger Site,” Arch. Biochem. Biophys. 195, 460 (1979).
[Crossref] [PubMed]

Hume, M.

G. V. R. Born, M. Hume, “Effect of the Numbers and Sizes of Platelet Aggregates on the Optical Density of Plasma,” Nature London 215, 1027 (1967).
[Crossref] [PubMed]

Hunter, D. R.

R. A. Haworth, D. R. Hunter, “The Ca-2+ Induced Membrane Transition in Mitochrondria II. Nature of the Ca-2+ Trigger Site,” Arch. Biochem. Biophys. 195, 460 (1979).
[Crossref] [PubMed]

Kerker, M.

M. Kerker, “The Optics of Colloidal Silver, Something Old and Something New,” J. Colloid Interface Sci. 105, 297 (1985).
[Crossref]

M. Kerker, D. D. Cooke, H. Chew, P. J. McNulty, “Light Scattering by Structured Spheres,” J. Opt. Soc. Am. 68, 592 (1978).
[Crossref]

A. L. Aden, M. Kerker, “Scattering of Electromagnetic Waves from Two Concentric Spheres,” J. Appl. Phys. 22, 1242 (1951).
[Crossref]

Koh, G.

Latimer, P.

P. Latimer, R. Roberts, K. Bijlani, “The Size of Aspherical or Inhomogeneous Particles in Suspension as Determined with a Transmittance Photometer,” J. Colloid Interface Sci. 105, 410 (1985).
[Crossref]

P. Latimer, “Light Scattering by a Homogeneous Sphere with Radial Projections,” Appl. Opt. 23, 442 (1984).
[Crossref] [PubMed]

P. Latimer, “Light Scattering by a Structured Particle: The Homogeneous Sphere with Holes,” Appl. Opt. 23, 1844 (1984).
[Crossref] [PubMed]

P. Latimer, “Blood Platelet Aggregometry: Predicted Effects of Aggregation, Photometer Geometry, and Multiple Scattering,” Appl. Opt. 22, 1136 (1983).
[Crossref] [PubMed]

P. Latimer, F. Wamble, “Light Scattering by Aggregates of Large Colloidal Particles,” Appl. Opt. 21, 2447 (1982).
[Crossref] [PubMed]

P. Latimer, “Light Scattering and Absorption as Methods of Studying Cell Population Parameters,” Ann. Rev. Biophys. Bioeng. 11, 129 (1982).
[Crossref]

B. E. Pyle, A. Brunsting, P. Latimer, “Detection of the Vacuole of Yeast Cells in Suspension by Transmittance Radiometry,” Appl. Opt. 18, 3615 (1979).
[Crossref] [PubMed]

P. Latimer, “Determination of Diffractor Size and Shape from Diffracted Light,” Appl. Opt. 17, 2162 (1978).
[Crossref] [PubMed]

P. Latimer, P. Barber, “Scattering by Ellipsoids of Revelation—A Comparison of Theoretical Methods,” J. Colloid Interface Sci. 63, 310 (1978).
[Crossref]

P. Latimer, “The Influence of Photometer Design on Optical-Conformational Changes,” J. Theor. Biol. 51, 1 (1975).
[Crossref] [PubMed]

P. Latimer, “Dependence of Extinction Efficiency of Spherical Scatterers on Photometer Geometry,” J. Opt. Soc. Am. 62, 208 (1972).
[Crossref]

F. D. Bryant, P. Latimer, “Optical Efficiencies of Large Particles of Arbitrary Shape and Orientation,” J. Colloid Interface Sci. 30, 291 (1969).
[Crossref]

Latimer, P. H.

P. H. Latimer, “Particle Sizing with a Laser Transmittance Photometer and the Mie Theory,” IEEE J. Quantum Electron. QE-20, 1529 (1984).
[Crossref]

Luscher, E. F.

D. A. Deranleau, D. Dubler, C. Rathen, E. F. Luscher, “Transient Kinetics of the Rapid Shape Change of Unstirred Human Platelets Stimulated with ADP,” Proc. Natl. Acad. Sci. USA 79, 7297 (1982).
[Crossref] [PubMed]

Mandelbrot, B. B.

B. B. Mandelbrot, Fractals, Form, Change, and Dimension (Freeman, San Francisco, 1977).

McNulty, P. J.

Michal, F.

F. Michal, G. V. R. Born, “Effect of the Rapid Shape Change of Platelets on Transmission and Scattering of Light Through Plasma,” Nature London, 231, 220 (1971).

Milton, J. G.

J. G. Milton, M. M. Frojmovic, “Turbidometric Evaluations of Platelet Activation: Relative Contributions of Measured Shape Change, Volume, and Early Aggregation,” J. Pharmacol. Methods 9, 101 (1983).
[Crossref] [PubMed]

Oster, G.

G. Oster, D. P. Riley, “Scattering from Cylindrically Symmetric Systems,” Acta Crystallogr 5, 272 (1952).
[Crossref]

G. Oster, D. P. Riley, “Scattering from Isotropic Colloidal and Macromolecular Systems,” Acta Crystallogr. 5, 1 (1952).
[Crossref]

Pyle, B. E.

Rathen, C.

D. A. Deranleau, D. Dubler, C. Rathen, E. F. Luscher, “Transient Kinetics of the Rapid Shape Change of Unstirred Human Platelets Stimulated with ADP,” Proc. Natl. Acad. Sci. USA 79, 7297 (1982).
[Crossref] [PubMed]

Riley, D. P.

G. Oster, D. P. Riley, “Scattering from Isotropic Colloidal and Macromolecular Systems,” Acta Crystallogr. 5, 1 (1952).
[Crossref]

G. Oster, D. P. Riley, “Scattering from Cylindrically Symmetric Systems,” Acta Crystallogr 5, 272 (1952).
[Crossref]

Roberts, R.

P. Latimer, R. Roberts, K. Bijlani, “The Size of Aspherical or Inhomogeneous Particles in Suspension as Determined with a Transmittance Photometer,” J. Colloid Interface Sci. 105, 410 (1985).
[Crossref]

Sliepcevich, C. M.

R. O. Gumprecht, C. M. Sliepcevich, “Scattering of Light by Large Spherical Particles,” J. Phys. Chem. 57, 90 (1953).
[Crossref]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Wamble, F.

Wipplier, C.

C. Wipplier, A. J. De Vries, H. Benoit, “Etude par Diffusion de la Lumiere d’un Latex de Chlorure de Polyvinyle et de sa Floculation,” in I.U.P.A.C. Sym. Macromol. Wiesbaden, Germany IIIC8 (Verlag Chemie, Weinheim, 1959).

Acta Crystallogr (1)

G. Oster, D. P. Riley, “Scattering from Cylindrically Symmetric Systems,” Acta Crystallogr 5, 272 (1952).
[Crossref]

Acta Crystallogr. (1)

G. Oster, D. P. Riley, “Scattering from Isotropic Colloidal and Macromolecular Systems,” Acta Crystallogr. 5, 1 (1952).
[Crossref]

Ann. Rev. Biophys. Bioeng. (1)

P. Latimer, “Light Scattering and Absorption as Methods of Studying Cell Population Parameters,” Ann. Rev. Biophys. Bioeng. 11, 129 (1982).
[Crossref]

Appl. Opt. (7)

Arch. Biochem. Biophys. (1)

R. A. Haworth, D. R. Hunter, “The Ca-2+ Induced Membrane Transition in Mitochrondria II. Nature of the Ca-2+ Trigger Site,” Arch. Biochem. Biophys. 195, 460 (1979).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

P. H. Latimer, “Particle Sizing with a Laser Transmittance Photometer and the Mie Theory,” IEEE J. Quantum Electron. QE-20, 1529 (1984).
[Crossref]

J. Appl. Phys. (1)

A. L. Aden, M. Kerker, “Scattering of Electromagnetic Waves from Two Concentric Spheres,” J. Appl. Phys. 22, 1242 (1951).
[Crossref]

J. Colloid Interface Sci. (6)

P. Latimer, P. Barber, “Scattering by Ellipsoids of Revelation—A Comparison of Theoretical Methods,” J. Colloid Interface Sci. 63, 310 (1978).
[Crossref]

P. Latimer, R. Roberts, K. Bijlani, “The Size of Aspherical or Inhomogeneous Particles in Suspension as Determined with a Transmittance Photometer,” J. Colloid Interface Sci. 105, 410 (1985).
[Crossref]

F. D. Bryant, P. Latimer, “Optical Efficiencies of Large Particles of Arbitrary Shape and Orientation,” J. Colloid Interface Sci. 30, 291 (1969).
[Crossref]

J. Gregory, “Turbidity Fluxuations in Flowing Systems,” J. Colloid Interface Sci. 105, 357 (1985); also personal communication (University College London, Dept. Civil & Municipal Engineering).
[Crossref]

M. Kerker, “The Optics of Colloidal Silver, Something Old and Something New,” J. Colloid Interface Sci. 105, 297 (1985).
[Crossref]

M. S. Bowen, M. L. Broide, R. J. Cohen, “The Kinematics of Floculation,” J. Colloid Interface Sci. 105, 605 (1985).
[Crossref]

J. Opt. Soc. Am. (2)

J. Pharmacol. Methods (1)

J. G. Milton, M. M. Frojmovic, “Turbidometric Evaluations of Platelet Activation: Relative Contributions of Measured Shape Change, Volume, and Early Aggregation,” J. Pharmacol. Methods 9, 101 (1983).
[Crossref] [PubMed]

J. Phys. Chem. (1)

R. O. Gumprecht, C. M. Sliepcevich, “Scattering of Light by Large Spherical Particles,” J. Phys. Chem. 57, 90 (1953).
[Crossref]

J. Theor. Biol. (1)

P. Latimer, “The Influence of Photometer Design on Optical-Conformational Changes,” J. Theor. Biol. 51, 1 (1975).
[Crossref] [PubMed]

Nature London (3)

G. V. R. Born, “Aggregation of Blood Platelets by Adenosine Diphosphate and its Reversal,” Nature London 194, 927 (1962).
[Crossref]

G. V. R. Born, M. Hume, “Effect of the Numbers and Sizes of Platelet Aggregates on the Optical Density of Plasma,” Nature London 215, 1027 (1967).
[Crossref] [PubMed]

F. Michal, G. V. R. Born, “Effect of the Rapid Shape Change of Platelets on Transmission and Scattering of Light Through Plasma,” Nature London, 231, 220 (1971).

Proc. Natl. Acad. Sci. USA (1)

D. A. Deranleau, D. Dubler, C. Rathen, E. F. Luscher, “Transient Kinetics of the Rapid Shape Change of Unstirred Human Platelets Stimulated with ADP,” Proc. Natl. Acad. Sci. USA 79, 7297 (1982).
[Crossref] [PubMed]

Other (5)

B. B. Mandelbrot, Fractals, Form, Change, and Dimension (Freeman, San Francisco, 1977).

F. Family, D. P. Landau, Eds., “Kinetics of Aggregation and Gelation, in Proceedings International Topical Conference on Kinetics of Aggregation and Gelation, 2–4 Apr. 1984, Athens, Ga. (North-Holland, Amsterdam, 1984).

C. Wipplier, A. J. De Vries, H. Benoit, “Etude par Diffusion de la Lumiere d’un Latex de Chlorure de Polyvinyle et de sa Floculation,” in I.U.P.A.C. Sym. Macromol. Wiesbaden, Germany IIIC8 (Verlag Chemie, Weinheim, 1959).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

A. Brunsting, “Light Scattering from Mammalian Cells,” Dissertation, U. New Mexico (1972).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagrams of photometer optical systems. The incident light is a well-collimated laser beam. In system (a) the axial photocell subtends a negligible solid angle at the scattering sample. This gives transmittances of nonabsorbing particles as governed by total scattering at all angles. System (b) is identical to (a) except that the photocell measures the effects of total scattering at angles within the suspension that are larger than γ [see Eq. (2)(4)]. System (c) measures the intensity I(θ) in Eq. (3) of light scattered at the polar angle θ. Angles γ and θ are defined in the suspension medium; the effects of refractive bending at the vessel surfaces were allowed for in the experiments.

Fig. 2
Fig. 2

Predicted effects of aggregation on normalized extinctions measured with different γ values of suspensions of latex spheres of diameter 0.264 μm, λ = 474 nm (He–Ne light in water), n = 1.19. The small connected points were calculated with the hollow sphere aggregate model, the large unconnected ones with the random spheroid.

Fig. 3
Fig. 3

Predicted effects of aggregation on extinctions E(γ) of suspensions of latex spheres of 0.61-μm diameter, see Fig. 2.

Fig. 4
Fig. 4

Predicted effects of aggregation on extinctions E(γ) of suspensions of latex spheres of 2.051-μm diameter, see Fig. 2.

Fig. 5
Fig. 5

Predicted effects of aggregation on the intensities I(γ) of light scattered at six different angles as functions of aggregate size. These curves are for aggregates of latex spheres of 0.264-μm diameter, λ = 474 nm. The small connected points were calculated with the hollow sphere model, the large unconnected ones with the randomly oriented

Fig. 6
Fig. 6

Predicted effects of aggregation on the intensities I(γ) of light scattered at different angles by suspensions of latex spheres of 0.61-μm diameter, see Fig. 5.

Fig. 7
Fig. 7

Predicted effects of aggregation on the intensities I(γ) of light scattered at different angles by suspensions of latex spheres of 2.051-μm diameter, see Fig. 5.

Fig. 8
Fig. 8

Schematic diagram of laser photometer used to measure E(γ) and I(θ).

Tables (5)

Tables Icon

Table I Effects of Aggregation of Polystyrene Latex Spheres (diameter 0.264 μm) in Water on Extinctions E(γ) and Scattered Intensities I(θ) for the Indicated γ and θ Values in Degrees, λ = 474 nm in Water a

Tables Icon

Table II Effects of Aggregation of Latex Spheres (Diameter 0.35 μm) on E(γ) and I(θ) of the Indicated Angles in Degrees a

Tables Icon

Table III Effects of Aggregation of Latex Spheres (Diameter = 0.61 μm) on E(γ) and I(θ) of the Indicated Angles in Degrees a

Tables Icon

Table IV Effects of Aggregation of Latex Spheres (Diameter = 1.099 μm) on E(γ) and I(θ) of the Indicated Angles in Degrees a

Tables Icon

Table V Effects of Aggregation of Latex Spheres (Diameter = 2.051μm) on E(γ) and I(θ) of the Indicated Angles in Degrees a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F = J ( 1 3 / D ) ,
E ( γ ) = 0 . 434 N L R ext ( γ ) ,
I ( θ ) = k σ ( θ ) ,
R sc ( γ ) = 2 π γ π σ ( θ ) sin θ d θ ,

Metrics