Abstract

Electron-beam-deposited zirconia (zirconium dioxide) films are known to be inhomogeneous. They have a higher refractive index near the substrate and a lower index at the outer surface. Zirconia films deposited on high temperature (300°C) substrates are also known to be crystalline, exhibiting both a cubic and a monoclinic phase. X-ray diffraction studies of zirconia films of various thicknesses show that films which have an optical thickness of less than a quarter of a wavelength at 600 nm are cubic, while films that are thicker consist of both cubic and monoclinic zirconia. As the film thickness increases beyond a quarterwave optical thickness of 600 nm, the amount of the cubic phase remains constant and the amount of the monoclinic phase increases linearly with thickness. This implies that the film nucleates with a cubic structure but that after the film reaches a critical thickness, the surface conditions become more favorable for the growth of the monoclinic phase. This also suggests several possible models for the inhomogeneity in index. Spectral analysis indicates that the cubic portion of the film is optically inhomogeneous, while the monoclinic phase is homogeneous and has a lower refractive index.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The Relationship Between Optical Inhomogeneity and Film Structure,” Thin Solid Films 57, 173 (1979).
    [CrossRef]
  2. Metals Handbook, Vol. 8 (American Society for Metals, Metals Park, Ohio1973), p. 327.
  3. See, for example, P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the Optical and Structural Properties of Dielectric ZrO2 Films by Ion-Assisted Deposition,” J. Appl. Phys. 55, 235 (1984).
    [CrossRef]
  4. D. P. Arndt et al., “Multiple Determination of the Optical Constants of Thin-Film Coating Materials,” Appl. Opt. 23, 3571 (1984).
    [CrossRef] [PubMed]
  5. F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Carniglia, T. Tuttle Hart, T. L. Lichtenstein, “Materials for Optical Coatings in the Ultraviolet,” Appl. Opt. 24, 496 (1985).
    [CrossRef] [PubMed]
  6. International Center for Diffraction Data (JCPDS), Inorganic File, Plates 13-307 and 27-997 (1978).
  7. F. Rainer, C. L. Vercimak, D. Milam, C. K. Carniglia, T. Tuttle Hart, “Measurements of the Dependence of Damage Thresholds on Laser Wavelength, Pulse Duration, and Film Thickness,” Natl. Bur. Stand. U.S. Spec. Publ., TBP (1983).

1985 (1)

1984 (2)

See, for example, P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the Optical and Structural Properties of Dielectric ZrO2 Films by Ion-Assisted Deposition,” J. Appl. Phys. 55, 235 (1984).
[CrossRef]

D. P. Arndt et al., “Multiple Determination of the Optical Constants of Thin-Film Coating Materials,” Appl. Opt. 23, 3571 (1984).
[CrossRef] [PubMed]

1979 (1)

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The Relationship Between Optical Inhomogeneity and Film Structure,” Thin Solid Films 57, 173 (1979).
[CrossRef]

Arndt, D. P.

Carniglia, C. K.

F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Carniglia, T. Tuttle Hart, T. L. Lichtenstein, “Materials for Optical Coatings in the Ultraviolet,” Appl. Opt. 24, 496 (1985).
[CrossRef] [PubMed]

F. Rainer, C. L. Vercimak, D. Milam, C. K. Carniglia, T. Tuttle Hart, “Measurements of the Dependence of Damage Thresholds on Laser Wavelength, Pulse Duration, and Film Thickness,” Natl. Bur. Stand. U.S. Spec. Publ., TBP (1983).

Harris, M.

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The Relationship Between Optical Inhomogeneity and Film Structure,” Thin Solid Films 57, 173 (1979).
[CrossRef]

Lichtenstein, T. L.

Lowdermilk, W. H.

Macleod, H. A.

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The Relationship Between Optical Inhomogeneity and Film Structure,” Thin Solid Films 57, 173 (1979).
[CrossRef]

Martin, P. J.

See, for example, P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the Optical and Structural Properties of Dielectric ZrO2 Films by Ion-Assisted Deposition,” J. Appl. Phys. 55, 235 (1984).
[CrossRef]

Milam, D.

F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Carniglia, T. Tuttle Hart, T. L. Lichtenstein, “Materials for Optical Coatings in the Ultraviolet,” Appl. Opt. 24, 496 (1985).
[CrossRef] [PubMed]

F. Rainer, C. L. Vercimak, D. Milam, C. K. Carniglia, T. Tuttle Hart, “Measurements of the Dependence of Damage Thresholds on Laser Wavelength, Pulse Duration, and Film Thickness,” Natl. Bur. Stand. U.S. Spec. Publ., TBP (1983).

Netterfield, R. P.

See, for example, P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the Optical and Structural Properties of Dielectric ZrO2 Films by Ion-Assisted Deposition,” J. Appl. Phys. 55, 235 (1984).
[CrossRef]

Ogura, S.

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The Relationship Between Optical Inhomogeneity and Film Structure,” Thin Solid Films 57, 173 (1979).
[CrossRef]

Pelletier, E.

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The Relationship Between Optical Inhomogeneity and Film Structure,” Thin Solid Films 57, 173 (1979).
[CrossRef]

Rainer, F.

F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Carniglia, T. Tuttle Hart, T. L. Lichtenstein, “Materials for Optical Coatings in the Ultraviolet,” Appl. Opt. 24, 496 (1985).
[CrossRef] [PubMed]

F. Rainer, C. L. Vercimak, D. Milam, C. K. Carniglia, T. Tuttle Hart, “Measurements of the Dependence of Damage Thresholds on Laser Wavelength, Pulse Duration, and Film Thickness,” Natl. Bur. Stand. U.S. Spec. Publ., TBP (1983).

Sainty, W. G.

See, for example, P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the Optical and Structural Properties of Dielectric ZrO2 Films by Ion-Assisted Deposition,” J. Appl. Phys. 55, 235 (1984).
[CrossRef]

Tuttle Hart, T.

F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Carniglia, T. Tuttle Hart, T. L. Lichtenstein, “Materials for Optical Coatings in the Ultraviolet,” Appl. Opt. 24, 496 (1985).
[CrossRef] [PubMed]

F. Rainer, C. L. Vercimak, D. Milam, C. K. Carniglia, T. Tuttle Hart, “Measurements of the Dependence of Damage Thresholds on Laser Wavelength, Pulse Duration, and Film Thickness,” Natl. Bur. Stand. U.S. Spec. Publ., TBP (1983).

Vercimak, C. L.

F. Rainer, C. L. Vercimak, D. Milam, C. K. Carniglia, T. Tuttle Hart, “Measurements of the Dependence of Damage Thresholds on Laser Wavelength, Pulse Duration, and Film Thickness,” Natl. Bur. Stand. U.S. Spec. Publ., TBP (1983).

Vidal, B.

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The Relationship Between Optical Inhomogeneity and Film Structure,” Thin Solid Films 57, 173 (1979).
[CrossRef]

Appl. Opt. (2)

J. Appl. Phys. (1)

See, for example, P. J. Martin, R. P. Netterfield, W. G. Sainty, “Modification of the Optical and Structural Properties of Dielectric ZrO2 Films by Ion-Assisted Deposition,” J. Appl. Phys. 55, 235 (1984).
[CrossRef]

Thin Solid Films (1)

M. Harris, H. A. Macleod, S. Ogura, E. Pelletier, B. Vidal, “The Relationship Between Optical Inhomogeneity and Film Structure,” Thin Solid Films 57, 173 (1979).
[CrossRef]

Other (3)

Metals Handbook, Vol. 8 (American Society for Metals, Metals Park, Ohio1973), p. 327.

International Center for Diffraction Data (JCPDS), Inorganic File, Plates 13-307 and 27-997 (1978).

F. Rainer, C. L. Vercimak, D. Milam, C. K. Carniglia, T. Tuttle Hart, “Measurements of the Dependence of Damage Thresholds on Laser Wavelength, Pulse Duration, and Film Thickness,” Natl. Bur. Stand. U.S. Spec. Publ., TBP (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Front-surface reflectance vs wavelength of an inhomogeneous single-layer evaporated zirconia film on fused silica. The reflectance of an uncoated silica substrate (dashed curve) is also shown for reference. The optical thickness of the film is two halfwaves at 310 nm.

Fig. 2
Fig. 2

X-ray diffraction patterns for three silica/zirconia stacks with design wavelengths of 532 nm (solid), 1064 nm (dashed), and 2000 nm (broken). C and M identify Bragg reflections from the cubic and monoclinic phases of zirconia, respectively.

Fig. 3
Fig. 3

Peak x-ray diffraction intensities as in Fig. 2 vs zirconia-layer quarterwave optical thickness (QWOT). C and M refer to the cubic (111) and monoclinic ( 11 1 ¯ ) and (111) intensities, respectively.

Tables (2)

Tables Icon

Table I Summary of Optical Inhomogeneity Analysis of Zirconia Films by Halfwave Reflection

Tables Icon

Table II Identification of Principal ZrO2 X-ray Diffraction Peaksa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ n = n av Δ R / ( 4 . 4 R s ) ,
n sub = n av + Δ n / 2 ,
n air = n av Δ n / 2 ,

Metrics