Abstract

This paper describes some observations of pulsed laser damage to optical fibers with emphasis on a damage mode characterized as a linear fracture along the outer core of a fiber. Damage threshold data are presented which illustrate the effects of the focusing lens, end-surface preparation, and type of fiber. An explanation based on fiber-beam misalignment is given and is illustrated by a simple experiment and ray trace.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. L. Moore, O. G. Ramey, Eds., Fiber Optic and Laser Sensors, Proc. Soc. Photo-Opt. Instrum. Eng.412 (1983).
  2. D. E. N. DavisOrganization Committee, Optical Fiber Sensors, Conf. Publ. 221 (IEE, London, 1983).
  3. H. C. Harjes, Laser Triggered Spark Gap Using Fiber Optic Transmission, Sci. Rep. 1 on LLL Subcon. 2257509, Texas Tech. U. (12Dec.1979).
  4. Y. Itoh et al., “High Power KrF Laser Transmission Through Optical Fibers and its Application to the Triggering of Gas Switches,” J. Appl. Phys. 54, 2956 (1983).
    [CrossRef]
  5. S. W. Allison et al., “Use of Fiber Optics and Laser-Induced Fluorescence for Remote Measurements in Strong Rotation,” in Proceedings, Fifth Workshop on Gases in Strong Rotation, U. Virginia, Charlottesville, 5–9. June 1983.
  6. B. G. Gorshkov et al., “Studies of Laser-Produced Damage to Transparent Optical Material in the UV Region and in Crossed UV-IR Beams,” in Proceedings, Thirteenth Annual Symposium on Optical Materials for High Power Lasers, Boulder, Colo., 17 Nov. 1981, p. 76.
  7. H. A. Bennett, A. J. Glass, A. H. Guenther, B. E. Newnam, “Laser Induced Damage in Optical Materials,” Appl. Opt. 20, 3003 (1981).
    [CrossRef] [PubMed]
  8. F. Rainer, T. F. Deaton, “Laser Damage Thresholds at Short Wavelengths,” Appl. Opt. 21, 1722 (1982).
    [CrossRef] [PubMed]
  9. R. Pini et al., “Wideband Frequency Conversion in the UV by Nine Orders of Stimulated Raman Scattering in a XeCl Laser Pumped Multimode Silica Fiber,” Appl. Phys. Lett. 43, 517 (1983).
    [CrossRef]
  10. W. Lowdermilk, D. Milam, “Review of Damage Threshold Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 476, 143 (1984).
  11. M. J. Soileau, North Texas State University, private communication.
  12. P. Belland, J. P. Crenn, “Changes in the Characteristics of a Gaussian Beam Weakly Diffracted by a Circular Aperture,” Appl. Opt. 21, 522 (1982).
    [CrossRef] [PubMed]
  13. J. Swain et al., “Improving the Bulk Laser-Damage Resistance of DKP by Baking and Pulsed Laser Irradiation,” in Proceedings, Thirteenth Annual Symposium on Optical Materials for High Power Lasers, Boulder, Colo., 17 Nov. 1981, p. 119.
  14. H. Hack, N. Neuroth, “Resistance of Optical and Colored Glasses to 3-nsec Laser Pulses,” Appl. Opt. 21, 3239 (1982).
    [CrossRef] [PubMed]
  15. J. R. Bettis et al., “Refractive-Index Dependence of Pulsed Laser-Induced Damage,” Opt. Lett. 4, 256 (1979).
    [CrossRef] [PubMed]
  16. K. Iwasaki, Y. Ohyama, Y. Nahaumi, “Flattening Laser Beam Intensity Distribution,” Lasers Appl. 2, 76 (1983).

1984 (1)

W. Lowdermilk, D. Milam, “Review of Damage Threshold Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 476, 143 (1984).

1983 (3)

Y. Itoh et al., “High Power KrF Laser Transmission Through Optical Fibers and its Application to the Triggering of Gas Switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

K. Iwasaki, Y. Ohyama, Y. Nahaumi, “Flattening Laser Beam Intensity Distribution,” Lasers Appl. 2, 76 (1983).

R. Pini et al., “Wideband Frequency Conversion in the UV by Nine Orders of Stimulated Raman Scattering in a XeCl Laser Pumped Multimode Silica Fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

1982 (3)

1981 (1)

1979 (1)

Allison, S. W.

S. W. Allison et al., “Use of Fiber Optics and Laser-Induced Fluorescence for Remote Measurements in Strong Rotation,” in Proceedings, Fifth Workshop on Gases in Strong Rotation, U. Virginia, Charlottesville, 5–9. June 1983.

Belland, P.

Bennett, H. A.

Bettis, J. R.

Crenn, J. P.

Davis, D. E. N.

D. E. N. DavisOrganization Committee, Optical Fiber Sensors, Conf. Publ. 221 (IEE, London, 1983).

Deaton, T. F.

Glass, A. J.

Gorshkov, B. G.

B. G. Gorshkov et al., “Studies of Laser-Produced Damage to Transparent Optical Material in the UV Region and in Crossed UV-IR Beams,” in Proceedings, Thirteenth Annual Symposium on Optical Materials for High Power Lasers, Boulder, Colo., 17 Nov. 1981, p. 76.

Guenther, A. H.

Hack, H.

Harjes, H. C.

H. C. Harjes, Laser Triggered Spark Gap Using Fiber Optic Transmission, Sci. Rep. 1 on LLL Subcon. 2257509, Texas Tech. U. (12Dec.1979).

Itoh, Y.

Y. Itoh et al., “High Power KrF Laser Transmission Through Optical Fibers and its Application to the Triggering of Gas Switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

Iwasaki, K.

K. Iwasaki, Y. Ohyama, Y. Nahaumi, “Flattening Laser Beam Intensity Distribution,” Lasers Appl. 2, 76 (1983).

Lowdermilk, W.

W. Lowdermilk, D. Milam, “Review of Damage Threshold Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 476, 143 (1984).

Milam, D.

W. Lowdermilk, D. Milam, “Review of Damage Threshold Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 476, 143 (1984).

Nahaumi, Y.

K. Iwasaki, Y. Ohyama, Y. Nahaumi, “Flattening Laser Beam Intensity Distribution,” Lasers Appl. 2, 76 (1983).

Neuroth, N.

Newnam, B. E.

Ohyama, Y.

K. Iwasaki, Y. Ohyama, Y. Nahaumi, “Flattening Laser Beam Intensity Distribution,” Lasers Appl. 2, 76 (1983).

Pini, R.

R. Pini et al., “Wideband Frequency Conversion in the UV by Nine Orders of Stimulated Raman Scattering in a XeCl Laser Pumped Multimode Silica Fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

Rainer, F.

Soileau, M. J.

M. J. Soileau, North Texas State University, private communication.

Swain, J.

J. Swain et al., “Improving the Bulk Laser-Damage Resistance of DKP by Baking and Pulsed Laser Irradiation,” in Proceedings, Thirteenth Annual Symposium on Optical Materials for High Power Lasers, Boulder, Colo., 17 Nov. 1981, p. 119.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

R. Pini et al., “Wideband Frequency Conversion in the UV by Nine Orders of Stimulated Raman Scattering in a XeCl Laser Pumped Multimode Silica Fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

J. Appl. Phys. (1)

Y. Itoh et al., “High Power KrF Laser Transmission Through Optical Fibers and its Application to the Triggering of Gas Switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

Lasers Appl. (1)

K. Iwasaki, Y. Ohyama, Y. Nahaumi, “Flattening Laser Beam Intensity Distribution,” Lasers Appl. 2, 76 (1983).

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

W. Lowdermilk, D. Milam, “Review of Damage Threshold Measurements at Lawrence Livermore National Laboratory,” Proc. Soc. Photo-Opt. Instrum. Eng. 476, 143 (1984).

Other (7)

M. J. Soileau, North Texas State University, private communication.

J. Swain et al., “Improving the Bulk Laser-Damage Resistance of DKP by Baking and Pulsed Laser Irradiation,” in Proceedings, Thirteenth Annual Symposium on Optical Materials for High Power Lasers, Boulder, Colo., 17 Nov. 1981, p. 119.

S. W. Allison et al., “Use of Fiber Optics and Laser-Induced Fluorescence for Remote Measurements in Strong Rotation,” in Proceedings, Fifth Workshop on Gases in Strong Rotation, U. Virginia, Charlottesville, 5–9. June 1983.

B. G. Gorshkov et al., “Studies of Laser-Produced Damage to Transparent Optical Material in the UV Region and in Crossed UV-IR Beams,” in Proceedings, Thirteenth Annual Symposium on Optical Materials for High Power Lasers, Boulder, Colo., 17 Nov. 1981, p. 76.

E. L. Moore, O. G. Ramey, Eds., Fiber Optic and Laser Sensors, Proc. Soc. Photo-Opt. Instrum. Eng.412 (1983).

D. E. N. DavisOrganization Committee, Optical Fiber Sensors, Conf. Publ. 221 (IEE, London, 1983).

H. C. Harjes, Laser Triggered Spark Gap Using Fiber Optic Transmission, Sci. Rep. 1 on LLL Subcon. 2257509, Texas Tech. U. (12Dec.1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Beam profile of near-UV laser in two dimensions.

Fig. 2
Fig. 2

Horizontal scan compared to Gaussian curve.

Fig. 3
Fig. 3

Vertical scan compared to Gaussian curve.

Fig. 4
Fig. 4

Fiber positioning mechansim.

Fig. 5
Fig. 5

Wide field view of damage to 1.0-mm PCS fiber; magnification 16×.

Fig. 6
Fig. 6

Close up view of damage to 1.0-mm PCS fiber; magnification 300×.

Fig. 7
Fig. 7

Simplified ray trace showing beam spread distance D at first reflection.

Fig. 8
Fig. 8

He–Ne laser beam undergoing internal reflection in decladded PCS fiber.

Fig. 9
Fig. 9

Cross-section view of optical intensity at the first internal reflection inside a fiber for/incident plane waves.

Tables (1)

Tables Icon

Table I Fiber Damage Thresholds (Millijoules)

Metrics