Abstract

Speckle patterns have high frequency phase data, which make it difficult to find the absolute phase of a single speckle pattern; however, the phase of the difference between two correlated speckle patterns can be determined. This is done by applying phase-shifting techniques to speckle interferometry, which will quantitatively determine the phase of double-exposure speckle measurements. The technique uses computer control to take data and calculate phase without an intermediate recording step. The randomness of the speckle causes noisy data points which are removed by data processing routines. One application of this technique is finding the phase of deformations, where up to ten waves of wavefront deformation can easily be measured. Results of deformations caused by tilt of a metal plate and a disbond in a honeycomb structure brazed to an aluminum plate are shown.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Butters, J. A. Leendertz, “Speckle Pattern and Holo graphic Techniques in Engineering Metrology,” Opt. Laser Technol. 3, 26 (1971).
    [CrossRef]
  2. R. Jones, C. Wykes, “General Parameters for the Design and Optimization of Electronic Speckle Pattern Interferometers,” Opt. Acta 28, 949 (1981).
    [CrossRef]
  3. C. Wykes, “Use of Electronic Speckle Pattern Interferometry (ESPI) in the Measurement of Static and Dynamic Surface Displacements,” Opt. Eng. 21, 400 (1982).
    [CrossRef]
  4. R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. P., London, 1983).
  5. G. Å. Slettemoen, “General Analysis of Fringe Contrast in Electronic Speckle Pattern Interferometry,” Opt. Acta 26, 313 (1979).
    [CrossRef]
  6. O. J. Løkberg, “Advances and Applications of Electronic Speckle Pattern Interferometery (ESPI),” Proc. Soc. Photo-Opt. Instrum. Eng. 215, 92 (1980).
  7. J. C. Wyant et al., “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27, 101 (1984).
    [CrossRef]
  8. P. Hariharan, Optical Holography (Cambridge U. P., London, 1984).
  9. P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase-Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393 (1982).
    [CrossRef]
  10. K. Creath, “Digital Speckle Pattern Interferometry (DSPI) Using a 100 × 100 Imaging Array,” Proc. Soc. Photo-Opt. Instrum. Eng. 501, 292 (1984).
  11. P. Carré, “Installation et utilisation du compateur photoelectrique et interferential du Bureau International des Poids et Mesures,” Metrologia 2, 13(1966).
    [CrossRef]
  12. K. Creath, Y.-Y. Cheng, J. C. Wyant, “Contouring Aspheric Surfaces Using Two-Wavelength Phase-Shifting Interferometry,” to be published in Opt. Acta.32, (1985).
    [CrossRef]
  13. J. W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer-Verlag, Berlin, 1975).
    [CrossRef]
  14. Å. Slettemoen, J. C. Wyant, “Maximal Fraction of Accepted Measurements in Phase-Shifting Speckle Interferometry: a Theoretical Study,” to be published in J. Opt. Soc. Am. A2 (1985).
  15. B. R. Frieden, “Some Statistical Properties of the Median Window,” Proc. Soc. Photo-Opt. Instrum. Eng. 373, 219 (1981).
  16. K. Creath, “Phase-Shifting Speckle Interferometry,” Proc. Soc. Photo-Opt. Instrum. Eng.556, in press (1985).

1984 (2)

J. C. Wyant et al., “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27, 101 (1984).
[CrossRef]

K. Creath, “Digital Speckle Pattern Interferometry (DSPI) Using a 100 × 100 Imaging Array,” Proc. Soc. Photo-Opt. Instrum. Eng. 501, 292 (1984).

1982 (2)

P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase-Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393 (1982).
[CrossRef]

C. Wykes, “Use of Electronic Speckle Pattern Interferometry (ESPI) in the Measurement of Static and Dynamic Surface Displacements,” Opt. Eng. 21, 400 (1982).
[CrossRef]

1981 (2)

R. Jones, C. Wykes, “General Parameters for the Design and Optimization of Electronic Speckle Pattern Interferometers,” Opt. Acta 28, 949 (1981).
[CrossRef]

B. R. Frieden, “Some Statistical Properties of the Median Window,” Proc. Soc. Photo-Opt. Instrum. Eng. 373, 219 (1981).

1980 (1)

O. J. Løkberg, “Advances and Applications of Electronic Speckle Pattern Interferometery (ESPI),” Proc. Soc. Photo-Opt. Instrum. Eng. 215, 92 (1980).

1979 (1)

G. Å. Slettemoen, “General Analysis of Fringe Contrast in Electronic Speckle Pattern Interferometry,” Opt. Acta 26, 313 (1979).
[CrossRef]

1971 (1)

J. N. Butters, J. A. Leendertz, “Speckle Pattern and Holo graphic Techniques in Engineering Metrology,” Opt. Laser Technol. 3, 26 (1971).
[CrossRef]

1966 (1)

P. Carré, “Installation et utilisation du compateur photoelectrique et interferential du Bureau International des Poids et Mesures,” Metrologia 2, 13(1966).
[CrossRef]

Brown, N.

P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase-Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393 (1982).
[CrossRef]

Butters, J. N.

J. N. Butters, J. A. Leendertz, “Speckle Pattern and Holo graphic Techniques in Engineering Metrology,” Opt. Laser Technol. 3, 26 (1971).
[CrossRef]

Carré, P.

P. Carré, “Installation et utilisation du compateur photoelectrique et interferential du Bureau International des Poids et Mesures,” Metrologia 2, 13(1966).
[CrossRef]

Cheng, Y.-Y.

K. Creath, Y.-Y. Cheng, J. C. Wyant, “Contouring Aspheric Surfaces Using Two-Wavelength Phase-Shifting Interferometry,” to be published in Opt. Acta.32, (1985).
[CrossRef]

Creath, K.

K. Creath, “Digital Speckle Pattern Interferometry (DSPI) Using a 100 × 100 Imaging Array,” Proc. Soc. Photo-Opt. Instrum. Eng. 501, 292 (1984).

K. Creath, Y.-Y. Cheng, J. C. Wyant, “Contouring Aspheric Surfaces Using Two-Wavelength Phase-Shifting Interferometry,” to be published in Opt. Acta.32, (1985).
[CrossRef]

K. Creath, “Phase-Shifting Speckle Interferometry,” Proc. Soc. Photo-Opt. Instrum. Eng.556, in press (1985).

Frieden, B. R.

B. R. Frieden, “Some Statistical Properties of the Median Window,” Proc. Soc. Photo-Opt. Instrum. Eng. 373, 219 (1981).

Goodman, J. W.

J. W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer-Verlag, Berlin, 1975).
[CrossRef]

Hariharan, P.

P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase-Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393 (1982).
[CrossRef]

P. Hariharan, Optical Holography (Cambridge U. P., London, 1984).

Jones, R.

R. Jones, C. Wykes, “General Parameters for the Design and Optimization of Electronic Speckle Pattern Interferometers,” Opt. Acta 28, 949 (1981).
[CrossRef]

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. P., London, 1983).

Leendertz, J. A.

J. N. Butters, J. A. Leendertz, “Speckle Pattern and Holo graphic Techniques in Engineering Metrology,” Opt. Laser Technol. 3, 26 (1971).
[CrossRef]

Løkberg, O. J.

O. J. Løkberg, “Advances and Applications of Electronic Speckle Pattern Interferometery (ESPI),” Proc. Soc. Photo-Opt. Instrum. Eng. 215, 92 (1980).

Oreb, B. F.

P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase-Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393 (1982).
[CrossRef]

Slettemoen, Å.

Å. Slettemoen, J. C. Wyant, “Maximal Fraction of Accepted Measurements in Phase-Shifting Speckle Interferometry: a Theoretical Study,” to be published in J. Opt. Soc. Am. A2 (1985).

Slettemoen, G. Å.

G. Å. Slettemoen, “General Analysis of Fringe Contrast in Electronic Speckle Pattern Interferometry,” Opt. Acta 26, 313 (1979).
[CrossRef]

Wyant, J. C.

J. C. Wyant et al., “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27, 101 (1984).
[CrossRef]

Å. Slettemoen, J. C. Wyant, “Maximal Fraction of Accepted Measurements in Phase-Shifting Speckle Interferometry: a Theoretical Study,” to be published in J. Opt. Soc. Am. A2 (1985).

K. Creath, Y.-Y. Cheng, J. C. Wyant, “Contouring Aspheric Surfaces Using Two-Wavelength Phase-Shifting Interferometry,” to be published in Opt. Acta.32, (1985).
[CrossRef]

Wykes, C.

C. Wykes, “Use of Electronic Speckle Pattern Interferometry (ESPI) in the Measurement of Static and Dynamic Surface Displacements,” Opt. Eng. 21, 400 (1982).
[CrossRef]

R. Jones, C. Wykes, “General Parameters for the Design and Optimization of Electronic Speckle Pattern Interferometers,” Opt. Acta 28, 949 (1981).
[CrossRef]

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. P., London, 1983).

ASLE Trans. (1)

J. C. Wyant et al., “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27, 101 (1984).
[CrossRef]

Metrologia (1)

P. Carré, “Installation et utilisation du compateur photoelectrique et interferential du Bureau International des Poids et Mesures,” Metrologia 2, 13(1966).
[CrossRef]

Opt. Acta (2)

R. Jones, C. Wykes, “General Parameters for the Design and Optimization of Electronic Speckle Pattern Interferometers,” Opt. Acta 28, 949 (1981).
[CrossRef]

G. Å. Slettemoen, “General Analysis of Fringe Contrast in Electronic Speckle Pattern Interferometry,” Opt. Acta 26, 313 (1979).
[CrossRef]

Opt. Commun. (1)

P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase-Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393 (1982).
[CrossRef]

Opt. Eng. (1)

C. Wykes, “Use of Electronic Speckle Pattern Interferometry (ESPI) in the Measurement of Static and Dynamic Surface Displacements,” Opt. Eng. 21, 400 (1982).
[CrossRef]

Opt. Laser Technol. (1)

J. N. Butters, J. A. Leendertz, “Speckle Pattern and Holo graphic Techniques in Engineering Metrology,” Opt. Laser Technol. 3, 26 (1971).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (3)

B. R. Frieden, “Some Statistical Properties of the Median Window,” Proc. Soc. Photo-Opt. Instrum. Eng. 373, 219 (1981).

O. J. Løkberg, “Advances and Applications of Electronic Speckle Pattern Interferometery (ESPI),” Proc. Soc. Photo-Opt. Instrum. Eng. 215, 92 (1980).

K. Creath, “Digital Speckle Pattern Interferometry (DSPI) Using a 100 × 100 Imaging Array,” Proc. Soc. Photo-Opt. Instrum. Eng. 501, 292 (1984).

Other (6)

P. Hariharan, Optical Holography (Cambridge U. P., London, 1984).

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. P., London, 1983).

K. Creath, “Phase-Shifting Speckle Interferometry,” Proc. Soc. Photo-Opt. Instrum. Eng.556, in press (1985).

K. Creath, Y.-Y. Cheng, J. C. Wyant, “Contouring Aspheric Surfaces Using Two-Wavelength Phase-Shifting Interferometry,” to be published in Opt. Acta.32, (1985).
[CrossRef]

J. W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer-Verlag, Berlin, 1975).
[CrossRef]

Å. Slettemoen, J. C. Wyant, “Maximal Fraction of Accepted Measurements in Phase-Shifting Speckle Interferometry: a Theoretical Study,” to be published in J. Opt. Soc. Am. A2 (1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of digital speckle pattern interferometer with a single-mode optical fiber used to produce a clean spherical reference wave.

Fig. 2
Fig. 2

Speckle decorrelation due to the collection of different scattering contributions.

Fig. 3
Fig. 3

Results of calculating the phase for a small object tilt: (A) raw calculated phase of deformation; (B) integration of 2π ambiguities; (C) removed streaks and filled in bad points with a 5 × 5 median window; (D) contour map of the tilt.

Fig. 4
Fig. 4

Results of calculating phase for a larger object tilt: (A) raw calculated phase; (B) integration of 2π ambiguities with phase errors present; (C) smoothed raw phase data followed by a 3 × 3 median window; (D) contour map of smoothed and integrated data for object tilt.

Fig. 5
Fig. 5

(A) DSPI fringes of disbond in braze between a honeycomb structure and aluminum plate where the object was heated to deform it; (B) raw calculated phase of same structure; (C) contour map after smoothing, median window, and integration of raw phase.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I before = I 1 ( x , y ) + I 2 ( x , y ) + 2 I 1 ( x , y ) I 2 ( x , y ) cos [ ϕ ( x , y ) ] ,
I after = I 1 ( x , y ) + I 2 ( x , y ) + 2 I 1 ( x , y ) I 2 ( x , y ) cos [ ϕ ( x , y ) Δ ϕ ( x , y ) ] ,
| I | 2 = 8 I 1 I 2 sin 2 ( Δ ϕ / 2 ) .
A ( x , y ) = I 0 { 1 + γ cos [ ψ ( x , y ) 3 α ] } , B ( x , y ) = I 0 { 1 + γ cos [ ψ ( x , y ) α ] } , C ( x , y ) = I 0 { 1 + γ cos [ ψ ( x , y ) + α ] } , D ( x , y ) = I 0 { 1 + γ cos [ ψ ( x , y ) + 3 α ] } ,
ψ = arctan { | [ ( A D ) + ( B C ) ] [ 3 ( B C ) ( A D ) ] | | ( B + C ) ( A + D ) | } ,
( B C ) = [ 2 I 0 γ sin α ] sin ψ ,
( B + C ) ( A + D ) = [ 2 I 0 γ cos α sin 2 α ] cos ψ ,
OPD ( x , y ) = ψ ( x , y ) λ 2 π .
Δ ϕ ( x , y ) = ϕ ( x , y ) [ ϕ ( x , y ) Δ ϕ ( x , y ) ] = ψ before ψ after ,
2 I 1 I 2 < I min .
2 I 1 I 2 = [ ( B C ) + ( A D ) ] 2 + [ ( B + C ) ( A + D ) ] 2 2 ,

Metrics