Abstract

A spectroradiometer was developed for use on the ground and aboard ship. The instrument separates global and diffuse solar radiation with a rotating shading band. Calibration results are compared with those of other sun photometers. The instrument was also mounted on a stabilized platform during an experimental trial aboard ship on the Tyrrhenian Sea. Results are comparable with those obtained by handheld sun photometer.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Maracci, B. Sturm, “Measurement of Beam Transmittance and Path Radiance for Correcting Atmospheric Effects,” Fifth Conference on Space Optics, 14, 15 Oct., Marseille, France (1975), available from Joint Research Centre, Ispra, Italy.
  2. B. M. Sorensen, “Recommendation of the International Workshop on Atmospheric Correction of Satellite Observation of Sea Water Colour,” 20–22 Mar., Ispra, Italy (1979), available from Joint Research Centre, Ispra, Italy
  3. H. R. Gordon, “Removal of Atmospheric Effects from Satellite Imagery of the Oceans,” Appl. Opt. 17, 1631 (1978).
    [CrossRef] [PubMed]
  4. B. Sturm, “Ocean Colour Remote Sensing and Quantitative Retrieval of Surface Chlorophyll in Coastal Waters Using Nimbus CZCS Data,” COSPAR/SCOR/IUCRM Symposium on Oceanography from Space, 26–30 May, Venice, Italy (1980), available from Joint Research Centre, Ispra, Italy.
  5. R. Rizzi, R. Guzzi, R. Legnani, “Aerosol Size Spectra from Spectral Extinction Data: the Use of a Linear Inversion Method,” Appl. Opt. 21, 1578 (1982).
    [CrossRef] [PubMed]
  6. C. Tomasi, R. Guzzi, “High Precision Atmospheric Hygrometry Using the Solar Infrared Spectrum,” J. Phys. E. 7, 647 (1974).
    [CrossRef]
  7. R. Guzzi, G. Maracci, R. Rizzi, “Methodology for Experimental and Theoretical Analysis of Atmosphere,” in Proceedings, Annual Technical Conference on Remote Sensing and the Atmosphere (Remote Sensing Society, Liverpool, 1982), p. 192.
  8. R. Guzzi, C. Tomasi, O. Vittori, “Evidence of Particulate Extinction in the Near Infrared Spectrum of the Sun,” J. Atmos. Sci. 29, 517 (1972).
    [CrossRef]
  9. G. E. Shaw, J. A. Reagan, B. J. Herman, “Investigation of Atmospheric Extinction Using Direct Solar Radiation Measurements made with a Multiple Wavelength Radiometer,” J. Appl. Meteorol. 12, 274 (1973).
    [CrossRef]
  10. C. Tomasi, F. Prodi, M. Sentimenti, G. Cesari, “Multiwavelength Sun-Photometers for Accurate Measurements of Atmospheric Extinction in the Visible and Near-IR Spectral Range,” Appl. Opt. 22, 622 (1983).
    [CrossRef] [PubMed]
  11. G. E. Shaw, “Error Analysis of Multiwavelength Sun Photometry,” Pure Appl. Geophys. 114, 1 (1976).
    [CrossRef]
  12. W. A. Hovis, J. S. Knoll, “Characteristics of an Internally Illuminated Calibration Sphere,” Appl. Opt. 24, 4004 (1983).
    [CrossRef]
  13. B. A. LeBaron, W. A. Peterson, I. Dirmhirn, “Correction for Diffuse Irradiance Measured with Shadowbands,” Sol. Energy 25, 1 (1980).
    [CrossRef]
  14. F. Kasten, “A New Table and Approximate Formula for Relative Optical Air Mass,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 14, 206 (1966).
    [CrossRef]
  15. N. Robinson, Ed., Solar Radiation (American Elsevier, New York, 1966).
  16. R. Guzzi, R. Rizzi, “Water Vapor Absorption in the Visible and Near Infrared: Results of Field Measuements,” Appl. Opt. 23, 1853 (1984).
    [CrossRef] [PubMed]
  17. E. Vigroux, “Contribution a l’etude experimental de l’absorption de l’ozone,” Ann. Phys. 8, 709 (1938).
  18. F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” AFGL-TR-83-0187, Environmental Research Papers, No 846 (1983).

1984 (1)

1983 (2)

1982 (1)

1980 (1)

B. A. LeBaron, W. A. Peterson, I. Dirmhirn, “Correction for Diffuse Irradiance Measured with Shadowbands,” Sol. Energy 25, 1 (1980).
[CrossRef]

1978 (1)

1976 (1)

G. E. Shaw, “Error Analysis of Multiwavelength Sun Photometry,” Pure Appl. Geophys. 114, 1 (1976).
[CrossRef]

1974 (1)

C. Tomasi, R. Guzzi, “High Precision Atmospheric Hygrometry Using the Solar Infrared Spectrum,” J. Phys. E. 7, 647 (1974).
[CrossRef]

1973 (1)

G. E. Shaw, J. A. Reagan, B. J. Herman, “Investigation of Atmospheric Extinction Using Direct Solar Radiation Measurements made with a Multiple Wavelength Radiometer,” J. Appl. Meteorol. 12, 274 (1973).
[CrossRef]

1972 (1)

R. Guzzi, C. Tomasi, O. Vittori, “Evidence of Particulate Extinction in the Near Infrared Spectrum of the Sun,” J. Atmos. Sci. 29, 517 (1972).
[CrossRef]

1966 (1)

F. Kasten, “A New Table and Approximate Formula for Relative Optical Air Mass,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 14, 206 (1966).
[CrossRef]

1938 (1)

E. Vigroux, “Contribution a l’etude experimental de l’absorption de l’ozone,” Ann. Phys. 8, 709 (1938).

Cesari, G.

Dirmhirn, I.

B. A. LeBaron, W. A. Peterson, I. Dirmhirn, “Correction for Diffuse Irradiance Measured with Shadowbands,” Sol. Energy 25, 1 (1980).
[CrossRef]

Gordon, H. R.

Guzzi, R.

R. Guzzi, R. Rizzi, “Water Vapor Absorption in the Visible and Near Infrared: Results of Field Measuements,” Appl. Opt. 23, 1853 (1984).
[CrossRef] [PubMed]

R. Rizzi, R. Guzzi, R. Legnani, “Aerosol Size Spectra from Spectral Extinction Data: the Use of a Linear Inversion Method,” Appl. Opt. 21, 1578 (1982).
[CrossRef] [PubMed]

C. Tomasi, R. Guzzi, “High Precision Atmospheric Hygrometry Using the Solar Infrared Spectrum,” J. Phys. E. 7, 647 (1974).
[CrossRef]

R. Guzzi, C. Tomasi, O. Vittori, “Evidence of Particulate Extinction in the Near Infrared Spectrum of the Sun,” J. Atmos. Sci. 29, 517 (1972).
[CrossRef]

R. Guzzi, G. Maracci, R. Rizzi, “Methodology for Experimental and Theoretical Analysis of Atmosphere,” in Proceedings, Annual Technical Conference on Remote Sensing and the Atmosphere (Remote Sensing Society, Liverpool, 1982), p. 192.

Herman, B. J.

G. E. Shaw, J. A. Reagan, B. J. Herman, “Investigation of Atmospheric Extinction Using Direct Solar Radiation Measurements made with a Multiple Wavelength Radiometer,” J. Appl. Meteorol. 12, 274 (1973).
[CrossRef]

Hovis, W. A.

W. A. Hovis, J. S. Knoll, “Characteristics of an Internally Illuminated Calibration Sphere,” Appl. Opt. 24, 4004 (1983).
[CrossRef]

Kasten, F.

F. Kasten, “A New Table and Approximate Formula for Relative Optical Air Mass,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 14, 206 (1966).
[CrossRef]

Kneizys, F. X.

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” AFGL-TR-83-0187, Environmental Research Papers, No 846 (1983).

Knoll, J. S.

W. A. Hovis, J. S. Knoll, “Characteristics of an Internally Illuminated Calibration Sphere,” Appl. Opt. 24, 4004 (1983).
[CrossRef]

LeBaron, B. A.

B. A. LeBaron, W. A. Peterson, I. Dirmhirn, “Correction for Diffuse Irradiance Measured with Shadowbands,” Sol. Energy 25, 1 (1980).
[CrossRef]

Legnani, R.

Maracci, G.

G. Maracci, B. Sturm, “Measurement of Beam Transmittance and Path Radiance for Correcting Atmospheric Effects,” Fifth Conference on Space Optics, 14, 15 Oct., Marseille, France (1975), available from Joint Research Centre, Ispra, Italy.

R. Guzzi, G. Maracci, R. Rizzi, “Methodology for Experimental and Theoretical Analysis of Atmosphere,” in Proceedings, Annual Technical Conference on Remote Sensing and the Atmosphere (Remote Sensing Society, Liverpool, 1982), p. 192.

Peterson, W. A.

B. A. LeBaron, W. A. Peterson, I. Dirmhirn, “Correction for Diffuse Irradiance Measured with Shadowbands,” Sol. Energy 25, 1 (1980).
[CrossRef]

Prodi, F.

Reagan, J. A.

G. E. Shaw, J. A. Reagan, B. J. Herman, “Investigation of Atmospheric Extinction Using Direct Solar Radiation Measurements made with a Multiple Wavelength Radiometer,” J. Appl. Meteorol. 12, 274 (1973).
[CrossRef]

Rizzi, R.

R. Guzzi, R. Rizzi, “Water Vapor Absorption in the Visible and Near Infrared: Results of Field Measuements,” Appl. Opt. 23, 1853 (1984).
[CrossRef] [PubMed]

R. Rizzi, R. Guzzi, R. Legnani, “Aerosol Size Spectra from Spectral Extinction Data: the Use of a Linear Inversion Method,” Appl. Opt. 21, 1578 (1982).
[CrossRef] [PubMed]

R. Guzzi, G. Maracci, R. Rizzi, “Methodology for Experimental and Theoretical Analysis of Atmosphere,” in Proceedings, Annual Technical Conference on Remote Sensing and the Atmosphere (Remote Sensing Society, Liverpool, 1982), p. 192.

Sentimenti, M.

Shaw, G. E.

G. E. Shaw, “Error Analysis of Multiwavelength Sun Photometry,” Pure Appl. Geophys. 114, 1 (1976).
[CrossRef]

G. E. Shaw, J. A. Reagan, B. J. Herman, “Investigation of Atmospheric Extinction Using Direct Solar Radiation Measurements made with a Multiple Wavelength Radiometer,” J. Appl. Meteorol. 12, 274 (1973).
[CrossRef]

Sorensen, B. M.

B. M. Sorensen, “Recommendation of the International Workshop on Atmospheric Correction of Satellite Observation of Sea Water Colour,” 20–22 Mar., Ispra, Italy (1979), available from Joint Research Centre, Ispra, Italy

Sturm, B.

G. Maracci, B. Sturm, “Measurement of Beam Transmittance and Path Radiance for Correcting Atmospheric Effects,” Fifth Conference on Space Optics, 14, 15 Oct., Marseille, France (1975), available from Joint Research Centre, Ispra, Italy.

B. Sturm, “Ocean Colour Remote Sensing and Quantitative Retrieval of Surface Chlorophyll in Coastal Waters Using Nimbus CZCS Data,” COSPAR/SCOR/IUCRM Symposium on Oceanography from Space, 26–30 May, Venice, Italy (1980), available from Joint Research Centre, Ispra, Italy.

Tomasi, C.

C. Tomasi, F. Prodi, M. Sentimenti, G. Cesari, “Multiwavelength Sun-Photometers for Accurate Measurements of Atmospheric Extinction in the Visible and Near-IR Spectral Range,” Appl. Opt. 22, 622 (1983).
[CrossRef] [PubMed]

C. Tomasi, R. Guzzi, “High Precision Atmospheric Hygrometry Using the Solar Infrared Spectrum,” J. Phys. E. 7, 647 (1974).
[CrossRef]

R. Guzzi, C. Tomasi, O. Vittori, “Evidence of Particulate Extinction in the Near Infrared Spectrum of the Sun,” J. Atmos. Sci. 29, 517 (1972).
[CrossRef]

Vigroux, E.

E. Vigroux, “Contribution a l’etude experimental de l’absorption de l’ozone,” Ann. Phys. 8, 709 (1938).

Vittori, O.

R. Guzzi, C. Tomasi, O. Vittori, “Evidence of Particulate Extinction in the Near Infrared Spectrum of the Sun,” J. Atmos. Sci. 29, 517 (1972).
[CrossRef]

Ann. Phys. (1)

E. Vigroux, “Contribution a l’etude experimental de l’absorption de l’ozone,” Ann. Phys. 8, 709 (1938).

Appl. Opt. (5)

Arch. Meteorol. Geophys. Bioklimatol. Ser. B (1)

F. Kasten, “A New Table and Approximate Formula for Relative Optical Air Mass,” Arch. Meteorol. Geophys. Bioklimatol. Ser. B 14, 206 (1966).
[CrossRef]

J. Appl. Meteorol. (1)

G. E. Shaw, J. A. Reagan, B. J. Herman, “Investigation of Atmospheric Extinction Using Direct Solar Radiation Measurements made with a Multiple Wavelength Radiometer,” J. Appl. Meteorol. 12, 274 (1973).
[CrossRef]

J. Atmos. Sci. (1)

R. Guzzi, C. Tomasi, O. Vittori, “Evidence of Particulate Extinction in the Near Infrared Spectrum of the Sun,” J. Atmos. Sci. 29, 517 (1972).
[CrossRef]

J. Phys. E. (1)

C. Tomasi, R. Guzzi, “High Precision Atmospheric Hygrometry Using the Solar Infrared Spectrum,” J. Phys. E. 7, 647 (1974).
[CrossRef]

Pure Appl. Geophys. (1)

G. E. Shaw, “Error Analysis of Multiwavelength Sun Photometry,” Pure Appl. Geophys. 114, 1 (1976).
[CrossRef]

Sol. Energy (1)

B. A. LeBaron, W. A. Peterson, I. Dirmhirn, “Correction for Diffuse Irradiance Measured with Shadowbands,” Sol. Energy 25, 1 (1980).
[CrossRef]

Other (6)

N. Robinson, Ed., Solar Radiation (American Elsevier, New York, 1966).

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” AFGL-TR-83-0187, Environmental Research Papers, No 846 (1983).

R. Guzzi, G. Maracci, R. Rizzi, “Methodology for Experimental and Theoretical Analysis of Atmosphere,” in Proceedings, Annual Technical Conference on Remote Sensing and the Atmosphere (Remote Sensing Society, Liverpool, 1982), p. 192.

B. Sturm, “Ocean Colour Remote Sensing and Quantitative Retrieval of Surface Chlorophyll in Coastal Waters Using Nimbus CZCS Data,” COSPAR/SCOR/IUCRM Symposium on Oceanography from Space, 26–30 May, Venice, Italy (1980), available from Joint Research Centre, Ispra, Italy.

G. Maracci, B. Sturm, “Measurement of Beam Transmittance and Path Radiance for Correcting Atmospheric Effects,” Fifth Conference on Space Optics, 14, 15 Oct., Marseille, France (1975), available from Joint Research Centre, Ispra, Italy.

B. M. Sorensen, “Recommendation of the International Workshop on Atmospheric Correction of Satellite Observation of Sea Water Colour,” 20–22 Mar., Ispra, Italy (1979), available from Joint Research Centre, Ispra, Italy

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic drawing of the spectreradiometer: (1) diffusers; (2) O ring; (3) blackened cavity; (4) interference filters; (5) silicon barrier surface photodiode; (6) step motor; (7) electronic unit; (8) mechanical chopper; (9) waterproof connector; (10) rotating shadow band; (11) thermistor; (12) heater.

Fig. 2
Fig. 2

Spectral transmission of the nine interference filters described in Table I (bottom curves). Circles denote the relative spectral sensitivity of the photodetectors of the spectroradiometer in the wavelengths defined by the interference filters.

Fig. 3
Fig. 3

Langley plot obtained with lnI (λ in microns) as a function of air mass m for the five wavelengths indicated in the figure.

Fig. 4
Fig. 4

Same as Fig. 3 for four wavelengths. For the water vapor band we plot lnI(0.9314 μm) as a function of m.

Fig. 5
Fig. 5

Total optical thickness of the atmosphere τ(λ) as a function of wavelength measured with the spectroradiometer for a day with medium turbidity (Sestola, 20 June 1983) (triangles). For comparison, measurements are also reported taken on the same day but at higher altitude (Mt. Cimone) by a NIP with seven interference filters (circles) and a Volz photometer (stars).

Fig. 6
Fig. 6

Aerosol optical thickness τa(λ) as a function of wavelength obtained from measurement taken aboard ship on a clear day (Portofino, 7 Feb. 1984). For comparison, data obtained by a handheld multichannel radiometer (stars) are reported; more details in the text.

Fig. 7
Fig. 7

(1) Base on which the spectroradiometer is mounted. (2) Rectangular space which contains the gyroscope rotor. (3) Braking devices and the two screws used for lifting the whole suspended equipment; (4) Electric motor coupled to the gyroscope rotor by an elastic element; (5) Legs of the platform. The figure also shows the movements decomposition as described in the text.

Fig. 8
Fig. 8

Rotating band spectroradiometer mounted on the inertial platform during an experimental trial on the Tyrrhenian Sea. During this experiment on the behavior of the entire system the sea state was 2. It is possible to see the horizon and compared it to the position of the spectroradiometer.

Tables (2)

Tables Icon

Table I Wavelength Selected and Bandwidth of the Interference Filters

Tables Icon

Table II Stabilized Platform Project Data

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I G = I dir cos Z + F I diff = D I 0 ( λ ) exp [ τ ( λ ) m ( Z ) ] cos Z + F I diff ( λ ) ,
F = 1 / ( 1 X / T ) , X / T = ( 2 B / π R ) cos 3 δ ( sin θ sin t 0 + cos θ cos δ sin t 0 ) ;
I dir = ( I G F I diff ) / cos Z .
w = [ 1 / K 2 m ( Z ) ] ( ln G 0 / G ) 2 ,
I ( λ ) = I 0 ( λ ) exp ( σ n σ 03 σ m g σ a σ R ) ,
σ n = a ( m w w ) b , σ 03 = m 03 K u , σ m g = m r τ m g , σ R = m r τ R , σ a = m r τ a ,
m w = [ cos Z + 0 . 0548 ( 92 . 650 Z ) 1 . 452 ] 1 as proposed by Kasten , 14 m 03 = ( 1 + H 03 / r e ) / [ cos 2 Z + 2 ( H 03 / r e ) ] 1 / 2 as proposed by Robinson , 15 m r = [ cos Z + 0 . 15 ( 93 . 885 Z ) 1 . 253 ] 1 as proposed by Kasten , 14 τ R = 8 . 75 × 10 3 λ 4 . 08 .

Metrics