Abstract

An imaging system is proposed as an alternative to metallized connections between integrated circuits. Power requirements for metallized interconnects and electrooptic links are compared. A holographic optical element is considered as the imaging device. Several experimental systems have been constructed which have visible LEDs as the transmitters and PIN photodiodes as the receivers. Signals are evaluated at different source–detector separations. Multiple exposure holograms are used as a means of optical fan out allowing one source to simultaneously address several receiver locations. Limitations of this technique are also discussed.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Keyes, “Fundamental Limits in Digital Information Processing,” Proc. IEEE 69, 267 (1981).
    [CrossRef]
  2. A. J. Rainal, “Computing Inductive Noise of Chip Package,” AT&T Bell Lab. Tech. J. 63, 177 (1984).
  3. P. M. Solomon, Proc. IEEE 70, (1982).
  4. J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
    [CrossRef]
  5. B. K. Jenkins, T. C. Strand, “Computer-Generated Holograms for Space-Variant Interconnections of Optical Logic Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 437, 110 (1983).
  6. A. A. Sawchuk, T. C. Strand, “Digital Optical Computing,” Proc. IEEE 72, 758 (1984).
    [CrossRef]
  7. C. Mead, L. Conway, Introdution to VLSI Systems (Addison-Wesley, Menlo Park, Calif., 1980).
  8. S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, New York, 1979).
  9. H. M. Smith, Ed., Holographic Recording Materials (Springer, Belin, 1977).
    [CrossRef]
  10. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  11. R. R. A. Syms, L. Solymar, “Localized One-Dimensional Theory for Volume Holograms,” Opt. Quantum Electron. 13, 415 (1981).
    [CrossRef]
  12. R. Ferrante, M. P. Owen, L. Solymar, “Conjugate Diffraction Order in a Volume Holographic Off-Axis Lens,” J. Opt. Soc. Am. 71, 1385 (1981).
  13. P. R. Haugen, H. Bartelt, S. K. Case, “Image Formation by Multifacet Holograms,” Appl. Opt. 22, 2822 (1983).
    [CrossRef] [PubMed]
  14. J. Upatnieks, C. Leonard, “Efficiency and Contrast of Holograms,” J. Opt. Soc. Am. 60, 297 (1970).
    [CrossRef]

1984

A. J. Rainal, “Computing Inductive Noise of Chip Package,” AT&T Bell Lab. Tech. J. 63, 177 (1984).

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

A. A. Sawchuk, T. C. Strand, “Digital Optical Computing,” Proc. IEEE 72, 758 (1984).
[CrossRef]

1983

B. K. Jenkins, T. C. Strand, “Computer-Generated Holograms for Space-Variant Interconnections of Optical Logic Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 437, 110 (1983).

P. R. Haugen, H. Bartelt, S. K. Case, “Image Formation by Multifacet Holograms,” Appl. Opt. 22, 2822 (1983).
[CrossRef] [PubMed]

1982

P. M. Solomon, Proc. IEEE 70, (1982).

1981

R. W. Keyes, “Fundamental Limits in Digital Information Processing,” Proc. IEEE 69, 267 (1981).
[CrossRef]

R. R. A. Syms, L. Solymar, “Localized One-Dimensional Theory for Volume Holograms,” Opt. Quantum Electron. 13, 415 (1981).
[CrossRef]

R. Ferrante, M. P. Owen, L. Solymar, “Conjugate Diffraction Order in a Volume Holographic Off-Axis Lens,” J. Opt. Soc. Am. 71, 1385 (1981).

1970

1969

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Athale, R. A.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Bartelt, H.

Case, S. K.

Chynoweth, A. G.

S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, New York, 1979).

Conway, L.

C. Mead, L. Conway, Introdution to VLSI Systems (Addison-Wesley, Menlo Park, Calif., 1980).

Ferrante, R.

Goodman, J. W.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Haugen, P. R.

Jenkins, B. K.

B. K. Jenkins, T. C. Strand, “Computer-Generated Holograms for Space-Variant Interconnections of Optical Logic Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 437, 110 (1983).

Keyes, R. W.

R. W. Keyes, “Fundamental Limits in Digital Information Processing,” Proc. IEEE 69, 267 (1981).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Kung, S. Y.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Leonard, C.

Leonberger, F. J.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

Mead, C.

C. Mead, L. Conway, Introdution to VLSI Systems (Addison-Wesley, Menlo Park, Calif., 1980).

Miller, S. E.

S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, New York, 1979).

Owen, M. P.

Rainal, A. J.

A. J. Rainal, “Computing Inductive Noise of Chip Package,” AT&T Bell Lab. Tech. J. 63, 177 (1984).

Sawchuk, A. A.

A. A. Sawchuk, T. C. Strand, “Digital Optical Computing,” Proc. IEEE 72, 758 (1984).
[CrossRef]

Solomon, P. M.

P. M. Solomon, Proc. IEEE 70, (1982).

Solymar, L.

R. Ferrante, M. P. Owen, L. Solymar, “Conjugate Diffraction Order in a Volume Holographic Off-Axis Lens,” J. Opt. Soc. Am. 71, 1385 (1981).

R. R. A. Syms, L. Solymar, “Localized One-Dimensional Theory for Volume Holograms,” Opt. Quantum Electron. 13, 415 (1981).
[CrossRef]

Strand, T. C.

A. A. Sawchuk, T. C. Strand, “Digital Optical Computing,” Proc. IEEE 72, 758 (1984).
[CrossRef]

B. K. Jenkins, T. C. Strand, “Computer-Generated Holograms for Space-Variant Interconnections of Optical Logic Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 437, 110 (1983).

Syms, R. R. A.

R. R. A. Syms, L. Solymar, “Localized One-Dimensional Theory for Volume Holograms,” Opt. Quantum Electron. 13, 415 (1981).
[CrossRef]

Upatnieks, J.

Appl. Opt.

AT&T Bell Lab. Tech. J.

A. J. Rainal, “Computing Inductive Noise of Chip Package,” AT&T Bell Lab. Tech. J. 63, 177 (1984).

Bell Syst. Tech. J.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

J. Opt. Soc. Am.

Opt. Quantum Electron.

R. R. A. Syms, L. Solymar, “Localized One-Dimensional Theory for Volume Holograms,” Opt. Quantum Electron. 13, 415 (1981).
[CrossRef]

Proc. IEEE

R. W. Keyes, “Fundamental Limits in Digital Information Processing,” Proc. IEEE 69, 267 (1981).
[CrossRef]

P. M. Solomon, Proc. IEEE 70, (1982).

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984).
[CrossRef]

A. A. Sawchuk, T. C. Strand, “Digital Optical Computing,” Proc. IEEE 72, 758 (1984).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

B. K. Jenkins, T. C. Strand, “Computer-Generated Holograms for Space-Variant Interconnections of Optical Logic Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 437, 110 (1983).

Other

C. Mead, L. Conway, Introdution to VLSI Systems (Addison-Wesley, Menlo Park, Calif., 1980).

S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, New York, 1979).

H. M. Smith, Ed., Holographic Recording Materials (Springer, Belin, 1977).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

VLSI circuit (manufactured by Honeywell) with ~3000 gates and 150 bonding pads. Interconnections exist between gates on a common substrate and from bonding pads to other circuits and outside systems.

Fig. 2
Fig. 2

Schematic of gate-to-gate connection for two inverters. The line between gates is modeled as a single capacitor.

Fig. 3
Fig. 3

Schematic of chip-to-chip connection. Inverters have gates with increasing capacitance to minimize signal delay. Lines are assumed short enough so as not to be influenced by transmission line effects.

Fig. 4
Fig. 4

Detector circuit model. The space–charge region of the junction results in a capacitance shunting a photon induced current source. The series resistance is typically a few ohms and can be neglected. The parallel resistance is of the order of 109 Ω and can be assumed to be an open circuit.

Fig. 5
Fig. 5

Geometrical layout of a chip-to-chip connection. Two integrated circuits are mounted on a common substrate with L = 1–5 cm, w = 1 cm, and bonding pad widths and separations = 100 μm.

Fig. 6
Fig. 6

Imaging system for chip-to-chip communication. Light emitting sources and detectors replace transmitting and receiving bonding pads. A hologram is used as the imaging element. Design must include f/No. or l/D ratio, intensity emission profile of the source, and source–detector separation.

Fig. 7
Fig. 7

Measured diffraction efficiency curves for gratings with K approximating those formed by the meridional rays in (○) an f/1 system, i.e., 25°, and (×) an f/3.5 system, i.e., 10°. Significant efficiency exists over an angular range of 30–60°.

Fig. 8
Fig. 8

Spot diagrams for f/1, and f/3.5 systems with a reconstruction source point 0.5 cm from the axis of the element at x = 0, y = 0. Computations are based on the grating vector equation.

Fig. 9
Fig. 9

Simplest holographic configuration for imaging interconnects. Light from a point source is imaged to a diametrically opposite point. Several sequential exposures can be encoded and used to produce an invariant pattern of images. This can be used for invariant fan-out configurations.

Fig. 10
Fig. 10

Combined multifacet hologram and variable image mask. A separate hologram facet is formed with each fan-out pattern encoded on the mask. The mask and hologram are translated with respect to each other. Each hologram is formed with a converging reference wave to allow playback with an expanding beam.

Fig. 11
Fig. 11

Multifacet hologram formed with selective object source points. Source points are encoded in sequential fashion. This is the most flexible configuration but also the most difficult to implement.

Fig. 12
Fig. 12

Litronix LED with 250-μm2 emission area and a Hewlett-Packard photodiode from an electrooptic coupler with 400-μm2 active area. The separation of the two chips is ~60 μm.

Fig. 13
Fig. 13

Plot of the ratio of photodiode current with image focused on the detector to the current with the image focused off the detector. The equipment used did not allow measurements with source–detector separations from 4 to 10 mm; (×) indicates measurements obtained with sources and detectors on the same substrate; (○) on separate substrates.

Fig. 14
Fig. 14

CCD line scan traces of images of the 635-nm LED produced with the f/1.9 HOE. The CCD has 256, 13-μm elements. Oscilloscope scale is 330 μm per 1 cm. Source–CCD separations are (a) 0.45 cm; (b) 0.60 cm; (c) 1.00 cm; and (d) 1.50 cm.

Fig. 15
Fig. 15

(a) Schematic of hologram construction arrangement to form a multiple image with a single reconstruction source. The film plane is translated through fixed construction beams. (b) The resulting element is in effect a set of reflecting lenses with displaced optical axes which image the source relative to their respective axes. The lenses in (b) are shown unfolded for clarity.

Fig. 16
Fig. 16

(a) Photograph of multiple images formed with an element having 0.25-cm horizontal and 0.70-cm vertical displacements using a LED reconstruction source. The diode is 1 cm from the center of the image pattern. (b) Photograph of a CCD line trace of the LED imaged by a HOE with three 500-μm translations. Scale is 330 μm per 1 cm.

Tables (1)

Tables Icon

Table I Source and Detector Characteristics

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P = C V 2 2 τ ,
C g = r o A d ,
C l = r o w h l ,
i p = Φ q ( 1 r ) h υ [ 1 exp ( α 0 z ) ] ,
V = Q / C t , Q = 0 τ i d t i τ , τ = 1 nsec .
η = [ ξ / υ + ( 1 + ξ 2 υ 2 ) 1 / 2 coth ( υ 2 + ξ 2 ) 1 / 2 ] 1 ,
υ = j π n 1 d λ ( c r c s ) 1 / 2 , ξ = 1 / 2 D 0 ( 1 c r / c s ) , D 0 = α d cos θ 0 ,
Ω = ( π D 2 4 ) cos θ r 2 ,

Metrics