Abstract

A CO2 differential-absorption lidar system has been used for the remote sensing of ammonia in the atmosphere. For CO2 lidar returns backscattered from topographic targets at ranges up to 2.7 km, the path-averaged sensitivity of the DIAL system was 5 ppb of NH3. Concentrations of atmospheric ammonia were found to vary during the day from undetectable levels (<5 ppb) to as high as 20 ppb, depending on temperature and humidity conditions.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Murray, J. E. van der Laan, “Remote Measurement of Ethylene Using a CO2 Differential-Absorption Lidar,” Appl. Opt. 17, 814 (1978).
    [CrossRef] [PubMed]
  2. D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
    [CrossRef]
  3. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Remote Sensing of NO Using a Differential Absorption Lidar,” Appl. Opt. 19, 3282 (1980).
    [CrossRef] [PubMed]
  4. R. A. Baumgartner, R. L. Byer, “Remote SO2 Measurements at 4 μm with a Continuously Tunable Source,” Opt. Lett. 2, 163 (1978).
    [CrossRef] [PubMed]
  5. K. Asai, T. Itabe, T. Igarashi, “Range Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
    [CrossRef]
  6. R. C. Harriss, J. T. Michaels, “Sources of Atmospheric Ammonia,” in Second Symposium, Composition of the Nonurban Troposphere (1982).
  7. R. Abbas, R. L. Tanner, “Continuous Determination of Gaseous Ammonia in the Ambient Atmosphere Using Fluorescence Derivatization,” Atmos. Environ. 15, 277 (1981).
    [CrossRef]
  8. N. C. Lau, R. J. Charlson, “Discrepancy Between Background Atmospheric Ammonia Gas Measurement and Existence of Acid Sulfate as a Dominant Atmospheric Aerosol,” Atmos. Environ. 11, 475 (1977).
    [CrossRef]
  9. N. Menyuk, D. K. Killinger, “Temporal Correlation Measurements of Pulsed Dual CO2 lidar Returns,” Opt. Lett. 6, 301 (1981).
    [CrossRef] [PubMed]
  10. N. Menyuk, D. K. Killinger, “Assessment of Relative Error Sources in IR DIAL Measurement Accuracy,” Appl. Opt. 22, 2690 (1983).
    [CrossRef] [PubMed]
  11. N. Menyuk, P. F. Moulton, “Development of a High-Repetition-Rate Mini-TEA CO2 Laser,” Rev. Sci. Instrum. 51, 216 (1980).
    [CrossRef]
  12. R. R. Patty, G. M. Russwurm, W. A. McClenny, D. R. Morgan, “Carbon Dioxide Laser Absorption Coefficients for Determining Ambient Levels of O3, NH3, and C2H4,” Appl. Opt. 13, 2850 (1974).
    [CrossRef] [PubMed]
  13. R. J. Brewer, C. W. Bruce, “Photoacoustic Spectroscopy of NH3 at the 9-μm and 10-μm 12C16O2 Laser Wavelengths,” Appl. Opt. 17, 3746 (1978).
    [CrossRef] [PubMed]
  14. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Report AFCRL-72-0497, Environmental Research Paper 411 (1972); R. A. McClatchey, J. E. A. Selby, “Atmospheric Transmittance 7–30 μm: Attenuation of CO2 Laser Radiation,” Report AFCRL-72-0611, Environmental Research Paper 419 (1972).
  15. A. G. Kjelass, P. E. Nordal, A. Bjerkestrand, “Scintillation and Multiwavelength Coherence Effects in a Long-Path Laser Absorption Spectrometer,” Appl. Opt. 17, 277 (1978).
    [CrossRef]
  16. J. G. Hawley, D. D. Powell, D. E. Cooper, “Absorption Coefficient of Ammonia for Laser Remote Sensing of Atmospheric Trace Quantities,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 1985), paper WC28.
  17. A. Mayer, J. Comera, H. Charpentier, C. Jaussaud, “Absorption Coefficients of Various Pollutant Gases At CO2 Laser Wavelengths; Application to the Remote Sensing of Those Pollutants,” Appl. Opt. 17, 391 (1978).
    [CrossRef] [PubMed]
  18. H. Israel, G. W. Israel, Trace Elements in the Atmosphere (Ann Arbor Science, Ann Arbor, Mich., 1974).
  19. J. C. Petheram, “Differential Backscatter from the Atmospheric Aerosol: the Implications for IR Differential Absorption Lidar,” Appl. Opt. 20, 3941 (1981).
    [CrossRef] [PubMed]
  20. B. Nilsson, “Meteorological Influence on Aerosol Extinction in the 0.2–40-μm Wavelength Range,” Appl. Opt. 18, 3457 (1979).
    [CrossRef]

1983 (1)

1982 (1)

R. C. Harriss, J. T. Michaels, “Sources of Atmospheric Ammonia,” in Second Symposium, Composition of the Nonurban Troposphere (1982).

1981 (4)

R. Abbas, R. L. Tanner, “Continuous Determination of Gaseous Ammonia in the Ambient Atmosphere Using Fluorescence Derivatization,” Atmos. Environ. 15, 277 (1981).
[CrossRef]

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

N. Menyuk, D. K. Killinger, “Temporal Correlation Measurements of Pulsed Dual CO2 lidar Returns,” Opt. Lett. 6, 301 (1981).
[CrossRef] [PubMed]

J. C. Petheram, “Differential Backscatter from the Atmospheric Aerosol: the Implications for IR Differential Absorption Lidar,” Appl. Opt. 20, 3941 (1981).
[CrossRef] [PubMed]

1980 (2)

N. Menyuk, D. K. Killinger, W. E. DeFeo, “Remote Sensing of NO Using a Differential Absorption Lidar,” Appl. Opt. 19, 3282 (1980).
[CrossRef] [PubMed]

N. Menyuk, P. F. Moulton, “Development of a High-Repetition-Rate Mini-TEA CO2 Laser,” Rev. Sci. Instrum. 51, 216 (1980).
[CrossRef]

1979 (2)

K. Asai, T. Itabe, T. Igarashi, “Range Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

B. Nilsson, “Meteorological Influence on Aerosol Extinction in the 0.2–40-μm Wavelength Range,” Appl. Opt. 18, 3457 (1979).
[CrossRef]

1978 (5)

1977 (1)

N. C. Lau, R. J. Charlson, “Discrepancy Between Background Atmospheric Ammonia Gas Measurement and Existence of Acid Sulfate as a Dominant Atmospheric Aerosol,” Atmos. Environ. 11, 475 (1977).
[CrossRef]

1974 (1)

Abbas, R.

R. Abbas, R. L. Tanner, “Continuous Determination of Gaseous Ammonia in the Ambient Atmosphere Using Fluorescence Derivatization,” Atmos. Environ. 15, 277 (1981).
[CrossRef]

Asai, K.

K. Asai, T. Itabe, T. Igarashi, “Range Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Baumgartner, R. A.

Bjerkestrand, A.

Brewer, R. J.

Bruce, C. W.

Byer, R. L.

Charlson, R. J.

N. C. Lau, R. J. Charlson, “Discrepancy Between Background Atmospheric Ammonia Gas Measurement and Existence of Acid Sulfate as a Dominant Atmospheric Aerosol,” Atmos. Environ. 11, 475 (1977).
[CrossRef]

Charpentier, H.

Comera, J.

Cooper, D. E.

J. G. Hawley, D. D. Powell, D. E. Cooper, “Absorption Coefficient of Ammonia for Laser Remote Sensing of Atmospheric Trace Quantities,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 1985), paper WC28.

DeFeo, W. E.

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Report AFCRL-72-0497, Environmental Research Paper 411 (1972); R. A. McClatchey, J. E. A. Selby, “Atmospheric Transmittance 7–30 μm: Attenuation of CO2 Laser Radiation,” Report AFCRL-72-0611, Environmental Research Paper 419 (1972).

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Report AFCRL-72-0497, Environmental Research Paper 411 (1972); R. A. McClatchey, J. E. A. Selby, “Atmospheric Transmittance 7–30 μm: Attenuation of CO2 Laser Radiation,” Report AFCRL-72-0611, Environmental Research Paper 419 (1972).

Harriss, R. C.

R. C. Harriss, J. T. Michaels, “Sources of Atmospheric Ammonia,” in Second Symposium, Composition of the Nonurban Troposphere (1982).

Hawley, J. G.

J. G. Hawley, D. D. Powell, D. E. Cooper, “Absorption Coefficient of Ammonia for Laser Remote Sensing of Atmospheric Trace Quantities,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 1985), paper WC28.

Igarashi, T.

K. Asai, T. Itabe, T. Igarashi, “Range Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Israel, G. W.

H. Israel, G. W. Israel, Trace Elements in the Atmosphere (Ann Arbor Science, Ann Arbor, Mich., 1974).

Israel, H.

H. Israel, G. W. Israel, Trace Elements in the Atmosphere (Ann Arbor Science, Ann Arbor, Mich., 1974).

Itabe, T.

K. Asai, T. Itabe, T. Igarashi, “Range Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Jaussaud, C.

Killinger, D. K.

Kjelass, A. G.

Lau, N. C.

N. C. Lau, R. J. Charlson, “Discrepancy Between Background Atmospheric Ammonia Gas Measurement and Existence of Acid Sulfate as a Dominant Atmospheric Aerosol,” Atmos. Environ. 11, 475 (1977).
[CrossRef]

Mayer, A.

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Report AFCRL-72-0497, Environmental Research Paper 411 (1972); R. A. McClatchey, J. E. A. Selby, “Atmospheric Transmittance 7–30 μm: Attenuation of CO2 Laser Radiation,” Report AFCRL-72-0611, Environmental Research Paper 419 (1972).

McClenny, W. A.

Menyuk, N.

Michaels, J. T.

R. C. Harriss, J. T. Michaels, “Sources of Atmospheric Ammonia,” in Second Symposium, Composition of the Nonurban Troposphere (1982).

Morgan, D. R.

Moulton, P. F.

N. Menyuk, P. F. Moulton, “Development of a High-Repetition-Rate Mini-TEA CO2 Laser,” Rev. Sci. Instrum. 51, 216 (1980).
[CrossRef]

Murray, E. R.

Nilsson, B.

Nordal, P. E.

Patty, R. R.

Petheram, J. C.

Powell, D. D.

J. G. Hawley, D. D. Powell, D. E. Cooper, “Absorption Coefficient of Ammonia for Laser Remote Sensing of Atmospheric Trace Quantities,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 1985), paper WC28.

Russwurm, G. M.

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Report AFCRL-72-0497, Environmental Research Paper 411 (1972); R. A. McClatchey, J. E. A. Selby, “Atmospheric Transmittance 7–30 μm: Attenuation of CO2 Laser Radiation,” Report AFCRL-72-0611, Environmental Research Paper 419 (1972).

Tanner, R. L.

R. Abbas, R. L. Tanner, “Continuous Determination of Gaseous Ammonia in the Ambient Atmosphere Using Fluorescence Derivatization,” Atmos. Environ. 15, 277 (1981).
[CrossRef]

van der Laan, J. E.

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Report AFCRL-72-0497, Environmental Research Paper 411 (1972); R. A. McClatchey, J. E. A. Selby, “Atmospheric Transmittance 7–30 μm: Attenuation of CO2 Laser Radiation,” Report AFCRL-72-0611, Environmental Research Paper 419 (1972).

Appl. Opt. (9)

R. R. Patty, G. M. Russwurm, W. A. McClenny, D. R. Morgan, “Carbon Dioxide Laser Absorption Coefficients for Determining Ambient Levels of O3, NH3, and C2H4,” Appl. Opt. 13, 2850 (1974).
[CrossRef] [PubMed]

A. G. Kjelass, P. E. Nordal, A. Bjerkestrand, “Scintillation and Multiwavelength Coherence Effects in a Long-Path Laser Absorption Spectrometer,” Appl. Opt. 17, 277 (1978).
[CrossRef]

A. Mayer, J. Comera, H. Charpentier, C. Jaussaud, “Absorption Coefficients of Various Pollutant Gases At CO2 Laser Wavelengths; Application to the Remote Sensing of Those Pollutants,” Appl. Opt. 17, 391 (1978).
[CrossRef] [PubMed]

E. R. Murray, J. E. van der Laan, “Remote Measurement of Ethylene Using a CO2 Differential-Absorption Lidar,” Appl. Opt. 17, 814 (1978).
[CrossRef] [PubMed]

R. J. Brewer, C. W. Bruce, “Photoacoustic Spectroscopy of NH3 at the 9-μm and 10-μm 12C16O2 Laser Wavelengths,” Appl. Opt. 17, 3746 (1978).
[CrossRef] [PubMed]

B. Nilsson, “Meteorological Influence on Aerosol Extinction in the 0.2–40-μm Wavelength Range,” Appl. Opt. 18, 3457 (1979).
[CrossRef]

N. Menyuk, D. K. Killinger, W. E. DeFeo, “Remote Sensing of NO Using a Differential Absorption Lidar,” Appl. Opt. 19, 3282 (1980).
[CrossRef] [PubMed]

J. C. Petheram, “Differential Backscatter from the Atmospheric Aerosol: the Implications for IR Differential Absorption Lidar,” Appl. Opt. 20, 3941 (1981).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, “Assessment of Relative Error Sources in IR DIAL Measurement Accuracy,” Appl. Opt. 22, 2690 (1983).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

K. Asai, T. Itabe, T. Igarashi, “Range Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[CrossRef]

Atmos. Environ. (2)

R. Abbas, R. L. Tanner, “Continuous Determination of Gaseous Ammonia in the Ambient Atmosphere Using Fluorescence Derivatization,” Atmos. Environ. 15, 277 (1981).
[CrossRef]

N. C. Lau, R. J. Charlson, “Discrepancy Between Background Atmospheric Ammonia Gas Measurement and Existence of Acid Sulfate as a Dominant Atmospheric Aerosol,” Atmos. Environ. 11, 475 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

N. Menyuk, P. F. Moulton, “Development of a High-Repetition-Rate Mini-TEA CO2 Laser,” Rev. Sci. Instrum. 51, 216 (1980).
[CrossRef]

Second Symposium, Composition of the Nonurban Troposphere (1)

R. C. Harriss, J. T. Michaels, “Sources of Atmospheric Ammonia,” in Second Symposium, Composition of the Nonurban Troposphere (1982).

Other (3)

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Report AFCRL-72-0497, Environmental Research Paper 411 (1972); R. A. McClatchey, J. E. A. Selby, “Atmospheric Transmittance 7–30 μm: Attenuation of CO2 Laser Radiation,” Report AFCRL-72-0611, Environmental Research Paper 419 (1972).

J. G. Hawley, D. D. Powell, D. E. Cooper, “Absorption Coefficient of Ammonia for Laser Remote Sensing of Atmospheric Trace Quantities,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, D.C., 1985), paper WC28.

H. Israel, G. W. Israel, Trace Elements in the Atmosphere (Ann Arbor Science, Ann Arbor, Mich., 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the dual-laser lidar system used for the remote sensing of ammonia.

Fig. 2
Fig. 2

Time variation of lidar returns of 10.69-μm P(30) and 10.71-μm P(32) radiation passing through the tank and reflected from a topographic target at a range of 2.7 km after injecting 0.2 cm3 of 28% aqueous NH3.

Fig. 3
Fig. 3

Dual-laser DIAL measurements of ambient atmospheric NH3 using the 10.69-μm P(30) and 10.71-μm P(32) CO2 laser lines over a 2.7-km range with 26% relative humidity.

Fig. 4
Fig. 4

Single-laser DIAL measurements of ambient atmospheric NH3 using the 9.24-μm R(26) and 9.22-μm R(30) CO2 laser lines over a 2.7-km range with 26% relative humidity.

Fig. 5
Fig. 5

DIAL measurements of ambient atmospheric NH3 using the 9.24-μm R(26) and 9.22-μm R(30) CO2 laser lines over a 2.7-km range showing the effect of a change in relative humidity from 54 to 41%.

Tables (1)

Tables Icon

Table I NH3 Absorption Coefficients at Selected CO2 Laser Lines

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N a = [ ln ( P a / P a ) + 2 ( α α ) R ] / 2 ( σ a σ a ) R ,

Metrics