Abstract

Changes in the beam profile of the CO2 laser 10R(26) line, caused by transmission through, and absorption by, CDF3 were studied using an array of pyroelectric detectors. During the propagation of the laser beam through CDF3, nonlinear absorption and self-defocusing of the beam have both been determined from measurements of the effect on the exit beam of fluence, radiant energy, CDF3 pressure, transmission cell length, and distance from the exit of the cell to the detector array.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bernard, P. Galarneau, S. L. Chin, “Self-Focusing of CO2 Laser Pulses in Low-Pressure SF6,” Opt. Lett. 6, 139 (1981).
    [CrossRef] [PubMed]
  2. A. V. Nowak, D. O. Ham, “Self-Focusing of 10-μm Laser Pulses in SF6,” Opt. Lett. 6, 185 (1981).
    [CrossRef] [PubMed]
  3. N. V. Karlov, N. A. Karpov, Yu. N. Petrov, O. M. Stelmakh, “Self-Focusing of CO2 Laser Radiation in Resonantly Absorbing Gases,” Zh. Eksp. Teor. Fiz. Pis’ma Red. 17, 337 (1973) [JETP Lett. 17, 239 (1973)].
  4. M. O. Buhanin, I. A. Popov, “Self-Resonance Effect in Molecular Gases,” Pis’ma Zh. Tekh. Fiz. 4, 1382 (1978)[Sov. Tech. Phys. Lett. 4, 557 (1978)].
  5. M. R. Siegrist, P. D. Morgan, M. R. Green, “Self-Focusing and Defocusing of Pump Radiation in a Far-Infrared Laser,” J. Appl. Phys. 49, 3699 (1978).
    [CrossRef]
  6. C. F. Meyer, R. L. Woodin, A. Kaldor, “Laser Beam Profiles in SF6: Direct Evidence for Beam Distortion,” Chem. Phys. Lett. 83, 26 (1981).
    [CrossRef]
  7. J. R. Ackerhalt, H. W. Galbraith, J. C. Goldstein, “Self-Focusing in SF6,” Opt. Lett. 6, 377 (1981).
    [CrossRef] [PubMed]
  8. J. R. Ackerhalt, D. O. Ham, A. V. Nowak, C. R. Phipps, S. J. Thomas, “Collisionless Self-Focusing of CO2 10 μm P(20) Laser Laser Light in SF6,” IEEE J. Quantum Electron QE-19, 1120 (1983).
    [CrossRef]
  9. I. P. Herman, J. B. Marling, “IR Photolysis of CDF3: A Study in Kinetics of Multiple-Photon Dissociation with Applications to Deuterium Separation,” Chem. Phys. Lett. 64, 75 (1979).
    [CrossRef]
  10. S. A. Tuccio, A. Hartford, “Deuterium Enrichment via Selective Dissociation of Fluoroform-d with a Pulsed CO2 Laser,” Chem. Phys. Lett. 65, 234 (1979).
    [CrossRef]
  11. I. P. Herman, J. B. Marling, “Ultrahigh Single-Step Deuterium Enrichment in CO2 Laser Photolysis of Trifluoromethane as Measured by Carbon Isotope Labeling,” J. Chem. Phys. 72, 516 (1980).
    [CrossRef]
  12. J. B. Marling, I. P. Herman, S. J. Thomas, “Deuterium Separation at High Pressure by Nanosecond CO2 Laser Multiple-Photon Dissociation,” J. Chem. Phys. 72, 5603 (1980).
    [CrossRef]
  13. D. K. Evans, R. D. McAlpine, H. M. Adams, “The Multiphoton Absorption and Decomposition of Fluoroform-d: Laser Isotope Separation of Deuterium,” J. Chem. Phys. 77, 3551 (1982).
    [CrossRef]
  14. R. D. McAlpine, D. K. Evans, H. M. Adams, “CO2 Laser-Induced Multiphoton Absorption of Fluoroform-d: The Effects of Collisions,” J. Chem. Phys. 78, 5990 (1983).
    [CrossRef]
  15. I. P. Herman, “Two-Frequency CO2 Laser Multiple-Photon Dissociation and Dynamics of Excited State Absorption in CDF3,” Chem. Phys. 75, 121 (1983).
    [CrossRef]
  16. J. A. O’Neill, J. R. Robins, “The Effects of Wavelength, Temperature and CF3H Buffer Gas Pressure on the IR Multiphoton Decomposition of CF3D,” J. Chem. Phys. 81, 1825 (1984).
    [CrossRef]
  17. S. L. Chin, “Various Techniques for Producing a Single Longitudinal Mode TEA-CO2 Laser,” Opt. Laser Technol. 12, 85 (1980).
    [CrossRef]
  18. R. P. Leavitt, J. P. Sattler, T. L. Worchesky, “The ν5 Perpendicular Band of Deuterated Fluoroform,” J. Mol. Spectrosc. 106, 260 (1984).
    [CrossRef]
  19. D. Harradine, B. Foy, L. Laux, M. Dubs, J. I. Steinfeld, “IR Double Resonance of Fluoroform-d with a Tunable Diode Laser,” J. Chem. Phys. 81, 4267 (1984).
    [CrossRef]

1984

J. A. O’Neill, J. R. Robins, “The Effects of Wavelength, Temperature and CF3H Buffer Gas Pressure on the IR Multiphoton Decomposition of CF3D,” J. Chem. Phys. 81, 1825 (1984).
[CrossRef]

R. P. Leavitt, J. P. Sattler, T. L. Worchesky, “The ν5 Perpendicular Band of Deuterated Fluoroform,” J. Mol. Spectrosc. 106, 260 (1984).
[CrossRef]

D. Harradine, B. Foy, L. Laux, M. Dubs, J. I. Steinfeld, “IR Double Resonance of Fluoroform-d with a Tunable Diode Laser,” J. Chem. Phys. 81, 4267 (1984).
[CrossRef]

1983

R. D. McAlpine, D. K. Evans, H. M. Adams, “CO2 Laser-Induced Multiphoton Absorption of Fluoroform-d: The Effects of Collisions,” J. Chem. Phys. 78, 5990 (1983).
[CrossRef]

I. P. Herman, “Two-Frequency CO2 Laser Multiple-Photon Dissociation and Dynamics of Excited State Absorption in CDF3,” Chem. Phys. 75, 121 (1983).
[CrossRef]

J. R. Ackerhalt, D. O. Ham, A. V. Nowak, C. R. Phipps, S. J. Thomas, “Collisionless Self-Focusing of CO2 10 μm P(20) Laser Laser Light in SF6,” IEEE J. Quantum Electron QE-19, 1120 (1983).
[CrossRef]

1982

D. K. Evans, R. D. McAlpine, H. M. Adams, “The Multiphoton Absorption and Decomposition of Fluoroform-d: Laser Isotope Separation of Deuterium,” J. Chem. Phys. 77, 3551 (1982).
[CrossRef]

1981

1980

I. P. Herman, J. B. Marling, “Ultrahigh Single-Step Deuterium Enrichment in CO2 Laser Photolysis of Trifluoromethane as Measured by Carbon Isotope Labeling,” J. Chem. Phys. 72, 516 (1980).
[CrossRef]

J. B. Marling, I. P. Herman, S. J. Thomas, “Deuterium Separation at High Pressure by Nanosecond CO2 Laser Multiple-Photon Dissociation,” J. Chem. Phys. 72, 5603 (1980).
[CrossRef]

S. L. Chin, “Various Techniques for Producing a Single Longitudinal Mode TEA-CO2 Laser,” Opt. Laser Technol. 12, 85 (1980).
[CrossRef]

1979

I. P. Herman, J. B. Marling, “IR Photolysis of CDF3: A Study in Kinetics of Multiple-Photon Dissociation with Applications to Deuterium Separation,” Chem. Phys. Lett. 64, 75 (1979).
[CrossRef]

S. A. Tuccio, A. Hartford, “Deuterium Enrichment via Selective Dissociation of Fluoroform-d with a Pulsed CO2 Laser,” Chem. Phys. Lett. 65, 234 (1979).
[CrossRef]

1978

M. O. Buhanin, I. A. Popov, “Self-Resonance Effect in Molecular Gases,” Pis’ma Zh. Tekh. Fiz. 4, 1382 (1978)[Sov. Tech. Phys. Lett. 4, 557 (1978)].

M. R. Siegrist, P. D. Morgan, M. R. Green, “Self-Focusing and Defocusing of Pump Radiation in a Far-Infrared Laser,” J. Appl. Phys. 49, 3699 (1978).
[CrossRef]

1973

N. V. Karlov, N. A. Karpov, Yu. N. Petrov, O. M. Stelmakh, “Self-Focusing of CO2 Laser Radiation in Resonantly Absorbing Gases,” Zh. Eksp. Teor. Fiz. Pis’ma Red. 17, 337 (1973) [JETP Lett. 17, 239 (1973)].

Ackerhalt, J. R.

J. R. Ackerhalt, D. O. Ham, A. V. Nowak, C. R. Phipps, S. J. Thomas, “Collisionless Self-Focusing of CO2 10 μm P(20) Laser Laser Light in SF6,” IEEE J. Quantum Electron QE-19, 1120 (1983).
[CrossRef]

J. R. Ackerhalt, H. W. Galbraith, J. C. Goldstein, “Self-Focusing in SF6,” Opt. Lett. 6, 377 (1981).
[CrossRef] [PubMed]

Adams, H. M.

R. D. McAlpine, D. K. Evans, H. M. Adams, “CO2 Laser-Induced Multiphoton Absorption of Fluoroform-d: The Effects of Collisions,” J. Chem. Phys. 78, 5990 (1983).
[CrossRef]

D. K. Evans, R. D. McAlpine, H. M. Adams, “The Multiphoton Absorption and Decomposition of Fluoroform-d: Laser Isotope Separation of Deuterium,” J. Chem. Phys. 77, 3551 (1982).
[CrossRef]

Bernard, P.

Buhanin, M. O.

M. O. Buhanin, I. A. Popov, “Self-Resonance Effect in Molecular Gases,” Pis’ma Zh. Tekh. Fiz. 4, 1382 (1978)[Sov. Tech. Phys. Lett. 4, 557 (1978)].

Chin, S. L.

P. Bernard, P. Galarneau, S. L. Chin, “Self-Focusing of CO2 Laser Pulses in Low-Pressure SF6,” Opt. Lett. 6, 139 (1981).
[CrossRef] [PubMed]

S. L. Chin, “Various Techniques for Producing a Single Longitudinal Mode TEA-CO2 Laser,” Opt. Laser Technol. 12, 85 (1980).
[CrossRef]

Dubs, M.

D. Harradine, B. Foy, L. Laux, M. Dubs, J. I. Steinfeld, “IR Double Resonance of Fluoroform-d with a Tunable Diode Laser,” J. Chem. Phys. 81, 4267 (1984).
[CrossRef]

Evans, D. K.

R. D. McAlpine, D. K. Evans, H. M. Adams, “CO2 Laser-Induced Multiphoton Absorption of Fluoroform-d: The Effects of Collisions,” J. Chem. Phys. 78, 5990 (1983).
[CrossRef]

D. K. Evans, R. D. McAlpine, H. M. Adams, “The Multiphoton Absorption and Decomposition of Fluoroform-d: Laser Isotope Separation of Deuterium,” J. Chem. Phys. 77, 3551 (1982).
[CrossRef]

Foy, B.

D. Harradine, B. Foy, L. Laux, M. Dubs, J. I. Steinfeld, “IR Double Resonance of Fluoroform-d with a Tunable Diode Laser,” J. Chem. Phys. 81, 4267 (1984).
[CrossRef]

Galarneau, P.

Galbraith, H. W.

Goldstein, J. C.

Green, M. R.

M. R. Siegrist, P. D. Morgan, M. R. Green, “Self-Focusing and Defocusing of Pump Radiation in a Far-Infrared Laser,” J. Appl. Phys. 49, 3699 (1978).
[CrossRef]

Ham, D. O.

J. R. Ackerhalt, D. O. Ham, A. V. Nowak, C. R. Phipps, S. J. Thomas, “Collisionless Self-Focusing of CO2 10 μm P(20) Laser Laser Light in SF6,” IEEE J. Quantum Electron QE-19, 1120 (1983).
[CrossRef]

A. V. Nowak, D. O. Ham, “Self-Focusing of 10-μm Laser Pulses in SF6,” Opt. Lett. 6, 185 (1981).
[CrossRef] [PubMed]

Harradine, D.

D. Harradine, B. Foy, L. Laux, M. Dubs, J. I. Steinfeld, “IR Double Resonance of Fluoroform-d with a Tunable Diode Laser,” J. Chem. Phys. 81, 4267 (1984).
[CrossRef]

Hartford, A.

S. A. Tuccio, A. Hartford, “Deuterium Enrichment via Selective Dissociation of Fluoroform-d with a Pulsed CO2 Laser,” Chem. Phys. Lett. 65, 234 (1979).
[CrossRef]

Herman, I. P.

I. P. Herman, “Two-Frequency CO2 Laser Multiple-Photon Dissociation and Dynamics of Excited State Absorption in CDF3,” Chem. Phys. 75, 121 (1983).
[CrossRef]

J. B. Marling, I. P. Herman, S. J. Thomas, “Deuterium Separation at High Pressure by Nanosecond CO2 Laser Multiple-Photon Dissociation,” J. Chem. Phys. 72, 5603 (1980).
[CrossRef]

I. P. Herman, J. B. Marling, “Ultrahigh Single-Step Deuterium Enrichment in CO2 Laser Photolysis of Trifluoromethane as Measured by Carbon Isotope Labeling,” J. Chem. Phys. 72, 516 (1980).
[CrossRef]

I. P. Herman, J. B. Marling, “IR Photolysis of CDF3: A Study in Kinetics of Multiple-Photon Dissociation with Applications to Deuterium Separation,” Chem. Phys. Lett. 64, 75 (1979).
[CrossRef]

Kaldor, A.

C. F. Meyer, R. L. Woodin, A. Kaldor, “Laser Beam Profiles in SF6: Direct Evidence for Beam Distortion,” Chem. Phys. Lett. 83, 26 (1981).
[CrossRef]

Karlov, N. V.

N. V. Karlov, N. A. Karpov, Yu. N. Petrov, O. M. Stelmakh, “Self-Focusing of CO2 Laser Radiation in Resonantly Absorbing Gases,” Zh. Eksp. Teor. Fiz. Pis’ma Red. 17, 337 (1973) [JETP Lett. 17, 239 (1973)].

Karpov, N. A.

N. V. Karlov, N. A. Karpov, Yu. N. Petrov, O. M. Stelmakh, “Self-Focusing of CO2 Laser Radiation in Resonantly Absorbing Gases,” Zh. Eksp. Teor. Fiz. Pis’ma Red. 17, 337 (1973) [JETP Lett. 17, 239 (1973)].

Laux, L.

D. Harradine, B. Foy, L. Laux, M. Dubs, J. I. Steinfeld, “IR Double Resonance of Fluoroform-d with a Tunable Diode Laser,” J. Chem. Phys. 81, 4267 (1984).
[CrossRef]

Leavitt, R. P.

R. P. Leavitt, J. P. Sattler, T. L. Worchesky, “The ν5 Perpendicular Band of Deuterated Fluoroform,” J. Mol. Spectrosc. 106, 260 (1984).
[CrossRef]

Marling, J. B.

I. P. Herman, J. B. Marling, “Ultrahigh Single-Step Deuterium Enrichment in CO2 Laser Photolysis of Trifluoromethane as Measured by Carbon Isotope Labeling,” J. Chem. Phys. 72, 516 (1980).
[CrossRef]

J. B. Marling, I. P. Herman, S. J. Thomas, “Deuterium Separation at High Pressure by Nanosecond CO2 Laser Multiple-Photon Dissociation,” J. Chem. Phys. 72, 5603 (1980).
[CrossRef]

I. P. Herman, J. B. Marling, “IR Photolysis of CDF3: A Study in Kinetics of Multiple-Photon Dissociation with Applications to Deuterium Separation,” Chem. Phys. Lett. 64, 75 (1979).
[CrossRef]

McAlpine, R. D.

R. D. McAlpine, D. K. Evans, H. M. Adams, “CO2 Laser-Induced Multiphoton Absorption of Fluoroform-d: The Effects of Collisions,” J. Chem. Phys. 78, 5990 (1983).
[CrossRef]

D. K. Evans, R. D. McAlpine, H. M. Adams, “The Multiphoton Absorption and Decomposition of Fluoroform-d: Laser Isotope Separation of Deuterium,” J. Chem. Phys. 77, 3551 (1982).
[CrossRef]

Meyer, C. F.

C. F. Meyer, R. L. Woodin, A. Kaldor, “Laser Beam Profiles in SF6: Direct Evidence for Beam Distortion,” Chem. Phys. Lett. 83, 26 (1981).
[CrossRef]

Morgan, P. D.

M. R. Siegrist, P. D. Morgan, M. R. Green, “Self-Focusing and Defocusing of Pump Radiation in a Far-Infrared Laser,” J. Appl. Phys. 49, 3699 (1978).
[CrossRef]

Nowak, A. V.

J. R. Ackerhalt, D. O. Ham, A. V. Nowak, C. R. Phipps, S. J. Thomas, “Collisionless Self-Focusing of CO2 10 μm P(20) Laser Laser Light in SF6,” IEEE J. Quantum Electron QE-19, 1120 (1983).
[CrossRef]

A. V. Nowak, D. O. Ham, “Self-Focusing of 10-μm Laser Pulses in SF6,” Opt. Lett. 6, 185 (1981).
[CrossRef] [PubMed]

O’Neill, J. A.

J. A. O’Neill, J. R. Robins, “The Effects of Wavelength, Temperature and CF3H Buffer Gas Pressure on the IR Multiphoton Decomposition of CF3D,” J. Chem. Phys. 81, 1825 (1984).
[CrossRef]

Petrov, Yu. N.

N. V. Karlov, N. A. Karpov, Yu. N. Petrov, O. M. Stelmakh, “Self-Focusing of CO2 Laser Radiation in Resonantly Absorbing Gases,” Zh. Eksp. Teor. Fiz. Pis’ma Red. 17, 337 (1973) [JETP Lett. 17, 239 (1973)].

Phipps, C. R.

J. R. Ackerhalt, D. O. Ham, A. V. Nowak, C. R. Phipps, S. J. Thomas, “Collisionless Self-Focusing of CO2 10 μm P(20) Laser Laser Light in SF6,” IEEE J. Quantum Electron QE-19, 1120 (1983).
[CrossRef]

Popov, I. A.

M. O. Buhanin, I. A. Popov, “Self-Resonance Effect in Molecular Gases,” Pis’ma Zh. Tekh. Fiz. 4, 1382 (1978)[Sov. Tech. Phys. Lett. 4, 557 (1978)].

Robins, J. R.

J. A. O’Neill, J. R. Robins, “The Effects of Wavelength, Temperature and CF3H Buffer Gas Pressure on the IR Multiphoton Decomposition of CF3D,” J. Chem. Phys. 81, 1825 (1984).
[CrossRef]

Sattler, J. P.

R. P. Leavitt, J. P. Sattler, T. L. Worchesky, “The ν5 Perpendicular Band of Deuterated Fluoroform,” J. Mol. Spectrosc. 106, 260 (1984).
[CrossRef]

Siegrist, M. R.

M. R. Siegrist, P. D. Morgan, M. R. Green, “Self-Focusing and Defocusing of Pump Radiation in a Far-Infrared Laser,” J. Appl. Phys. 49, 3699 (1978).
[CrossRef]

Steinfeld, J. I.

D. Harradine, B. Foy, L. Laux, M. Dubs, J. I. Steinfeld, “IR Double Resonance of Fluoroform-d with a Tunable Diode Laser,” J. Chem. Phys. 81, 4267 (1984).
[CrossRef]

Stelmakh, O. M.

N. V. Karlov, N. A. Karpov, Yu. N. Petrov, O. M. Stelmakh, “Self-Focusing of CO2 Laser Radiation in Resonantly Absorbing Gases,” Zh. Eksp. Teor. Fiz. Pis’ma Red. 17, 337 (1973) [JETP Lett. 17, 239 (1973)].

Thomas, S. J.

J. R. Ackerhalt, D. O. Ham, A. V. Nowak, C. R. Phipps, S. J. Thomas, “Collisionless Self-Focusing of CO2 10 μm P(20) Laser Laser Light in SF6,” IEEE J. Quantum Electron QE-19, 1120 (1983).
[CrossRef]

J. B. Marling, I. P. Herman, S. J. Thomas, “Deuterium Separation at High Pressure by Nanosecond CO2 Laser Multiple-Photon Dissociation,” J. Chem. Phys. 72, 5603 (1980).
[CrossRef]

Tuccio, S. A.

S. A. Tuccio, A. Hartford, “Deuterium Enrichment via Selective Dissociation of Fluoroform-d with a Pulsed CO2 Laser,” Chem. Phys. Lett. 65, 234 (1979).
[CrossRef]

Woodin, R. L.

C. F. Meyer, R. L. Woodin, A. Kaldor, “Laser Beam Profiles in SF6: Direct Evidence for Beam Distortion,” Chem. Phys. Lett. 83, 26 (1981).
[CrossRef]

Worchesky, T. L.

R. P. Leavitt, J. P. Sattler, T. L. Worchesky, “The ν5 Perpendicular Band of Deuterated Fluoroform,” J. Mol. Spectrosc. 106, 260 (1984).
[CrossRef]

Chem. Phys.

I. P. Herman, “Two-Frequency CO2 Laser Multiple-Photon Dissociation and Dynamics of Excited State Absorption in CDF3,” Chem. Phys. 75, 121 (1983).
[CrossRef]

Chem. Phys. Lett.

I. P. Herman, J. B. Marling, “IR Photolysis of CDF3: A Study in Kinetics of Multiple-Photon Dissociation with Applications to Deuterium Separation,” Chem. Phys. Lett. 64, 75 (1979).
[CrossRef]

S. A. Tuccio, A. Hartford, “Deuterium Enrichment via Selective Dissociation of Fluoroform-d with a Pulsed CO2 Laser,” Chem. Phys. Lett. 65, 234 (1979).
[CrossRef]

C. F. Meyer, R. L. Woodin, A. Kaldor, “Laser Beam Profiles in SF6: Direct Evidence for Beam Distortion,” Chem. Phys. Lett. 83, 26 (1981).
[CrossRef]

IEEE J. Quantum Electron

J. R. Ackerhalt, D. O. Ham, A. V. Nowak, C. R. Phipps, S. J. Thomas, “Collisionless Self-Focusing of CO2 10 μm P(20) Laser Laser Light in SF6,” IEEE J. Quantum Electron QE-19, 1120 (1983).
[CrossRef]

J. Appl. Phys.

M. R. Siegrist, P. D. Morgan, M. R. Green, “Self-Focusing and Defocusing of Pump Radiation in a Far-Infrared Laser,” J. Appl. Phys. 49, 3699 (1978).
[CrossRef]

J. Chem. Phys.

D. Harradine, B. Foy, L. Laux, M. Dubs, J. I. Steinfeld, “IR Double Resonance of Fluoroform-d with a Tunable Diode Laser,” J. Chem. Phys. 81, 4267 (1984).
[CrossRef]

J. A. O’Neill, J. R. Robins, “The Effects of Wavelength, Temperature and CF3H Buffer Gas Pressure on the IR Multiphoton Decomposition of CF3D,” J. Chem. Phys. 81, 1825 (1984).
[CrossRef]

I. P. Herman, J. B. Marling, “Ultrahigh Single-Step Deuterium Enrichment in CO2 Laser Photolysis of Trifluoromethane as Measured by Carbon Isotope Labeling,” J. Chem. Phys. 72, 516 (1980).
[CrossRef]

J. B. Marling, I. P. Herman, S. J. Thomas, “Deuterium Separation at High Pressure by Nanosecond CO2 Laser Multiple-Photon Dissociation,” J. Chem. Phys. 72, 5603 (1980).
[CrossRef]

D. K. Evans, R. D. McAlpine, H. M. Adams, “The Multiphoton Absorption and Decomposition of Fluoroform-d: Laser Isotope Separation of Deuterium,” J. Chem. Phys. 77, 3551 (1982).
[CrossRef]

R. D. McAlpine, D. K. Evans, H. M. Adams, “CO2 Laser-Induced Multiphoton Absorption of Fluoroform-d: The Effects of Collisions,” J. Chem. Phys. 78, 5990 (1983).
[CrossRef]

J. Mol. Spectrosc.

R. P. Leavitt, J. P. Sattler, T. L. Worchesky, “The ν5 Perpendicular Band of Deuterated Fluoroform,” J. Mol. Spectrosc. 106, 260 (1984).
[CrossRef]

Opt. Laser Technol.

S. L. Chin, “Various Techniques for Producing a Single Longitudinal Mode TEA-CO2 Laser,” Opt. Laser Technol. 12, 85 (1980).
[CrossRef]

Opt. Lett.

Pis’ma Zh. Tekh. Fiz.

M. O. Buhanin, I. A. Popov, “Self-Resonance Effect in Molecular Gases,” Pis’ma Zh. Tekh. Fiz. 4, 1382 (1978)[Sov. Tech. Phys. Lett. 4, 557 (1978)].

Zh. Eksp. Teor. Fiz. Pis’ma Red.

N. V. Karlov, N. A. Karpov, Yu. N. Petrov, O. M. Stelmakh, “Self-Focusing of CO2 Laser Radiation in Resonantly Absorbing Gases,” Zh. Eksp. Teor. Fiz. Pis’ma Red. 17, 337 (1973) [JETP Lett. 17, 239 (1973)].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup used to measure the beam profiles. The detector array was mounted on a track allowing its distance from the interaction cell to be changed.

Fig. 2
Fig. 2

Temporal profile (a) and spatial profile (b) of the CO2 laser 10R(26) line transmitted through a vacuum in the interaction cell and through 10 Torr of CDF3 (c).

Fig. 3
Fig. 3

Plot of the FWHM of the transmitted CO2 10R(26) line as a function of CDF3 pressure for a 1-m interaction cell with the array detector located 27.5 cm from the output window of the interaction cell. The radiant energy = 90 mJ.

Fig. 4
Fig. 4

Plots of Φout vs Φin for = 50 mJ, ○ and 150 mJ ● at a CDF3 pressure of 5 Torr in a 1-m interaction cell with the detector array located 27.5 cm past the output window of the interaction cell. The reader will note that Φout is a function of as well as Φin; the significance of this is discussed in the text.

Fig. 5
Fig. 5

Plots of Φout vs Φin for = 48 mJ ○ and 161 mJ ● at a CDF3 pressure of 10 Torr in a 1-m interaction cell with the detector array located 27.5 cm past the output window of the interaction cell. The reader will note that Φout is a function of as well as Φin; the significance of this is discussed in the text.

Fig. 6
Fig. 6

Ratio of FWHM at pressure P to FWHM for P = 0 as a function of distance between the exit window of the 1-m interaction cell and the detector array for CDF3 pressures of 10 Torr ●, 5 Torr ▲, 3 Torr ○, and 0 Torr ◬ for a constant mean fluence of 2 J/cm2.

Fig. 7
Fig. 7

Plot of FWHM vs CDF3 pressure for distance from the exit window of a 25-cm interaction cell of 35 cm ▲ and 82 cm ●. A constant mean fluence of 1.9 J/cm2 was used.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ ( Φ ) = K Φ b .

Metrics