Abstract

A comparison of theories describing two laser photothermal lens signals is given. The aberrant nature of this lens is accounted for in a theory which treats the propagation of a monitor laser in terms of a phase shift in this laser beam wave front. The difference between theories are discussed in terms of the predicted signal strengths and temporal behavior. The aberrant theory results in smaller theoretical signal strengths and different functional relationships between signal and analyte level.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. L. Fang, R. L. Swofford “The Thermal Lens in Absorption Spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, Ed. (Academic, New York, 1983), Chap. 3.
  2. A. J. Twarowski, D. S. Kliger, “Multiphoton Absorption Spectra Using Thermal Blooming,” Chem. Phys. 20, 253 (1977).
    [CrossRef]
  3. K. Mori, T. Imasaka, N. Ishibashi, “Thermal Lens Spectrophotometry Based on Pulsed Laser Excitation,” Anal. Chem. 54, 2034 (1982).
    [CrossRef]
  4. C. A. Carter, J. M. Harris, “Comparison of Models Describing the Thermal Lens Effect,” Anal. Chem. 55, 1256 (1983).
    [CrossRef]
  5. G. R. Long, S. E. Bialkowski, “Pulsed Infrared Laser Thermal Lens Spectrophotometric Determination of Trace-Level Analytes,” Anal. Chem. 56, 2806 (1984).
    [CrossRef]
  6. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal Deflection Spectroscopy,” Appl. Opt. 20, 1333 (1981).
    [CrossRef] [PubMed]
  7. D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, “Effect of Low-Power Nonlinear Refraction on Laser-Beam Propagation in InSb,” Opt. Lett. 4, 331 (1979).
    [CrossRef] [PubMed]
  8. R. T. Bailey, F. R. Cruickshank, D. Pugh, W. Johnstone, “Pulsed Source Thermal Lens,” J. Chem. Soc. Faraday Trans 2 77, 1387 (1981).
    [CrossRef]
  9. R. T. Bailey, F. R. Cruickshank, D. Pugh, A. McLeod, W. Johnstone, “Gas Phase Thermal Diffusivities by a Thermal Lens Technique,” Chem. Phys. 68, 351 (1982).
    [CrossRef]
  10. M. C. Gupta, S. D. Hong, A. Gupta, J. Moacanin, “Thermal Diffusivity Measurements Using a Pulsed Dual-Beam Thermal Lens Technique,” Appl. Phys. Lett. 37, 505 (1980).
    [CrossRef]

1984 (1)

G. R. Long, S. E. Bialkowski, “Pulsed Infrared Laser Thermal Lens Spectrophotometric Determination of Trace-Level Analytes,” Anal. Chem. 56, 2806 (1984).
[CrossRef]

1983 (1)

C. A. Carter, J. M. Harris, “Comparison of Models Describing the Thermal Lens Effect,” Anal. Chem. 55, 1256 (1983).
[CrossRef]

1982 (2)

R. T. Bailey, F. R. Cruickshank, D. Pugh, A. McLeod, W. Johnstone, “Gas Phase Thermal Diffusivities by a Thermal Lens Technique,” Chem. Phys. 68, 351 (1982).
[CrossRef]

K. Mori, T. Imasaka, N. Ishibashi, “Thermal Lens Spectrophotometry Based on Pulsed Laser Excitation,” Anal. Chem. 54, 2034 (1982).
[CrossRef]

1981 (2)

R. T. Bailey, F. R. Cruickshank, D. Pugh, W. Johnstone, “Pulsed Source Thermal Lens,” J. Chem. Soc. Faraday Trans 2 77, 1387 (1981).
[CrossRef]

W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal Deflection Spectroscopy,” Appl. Opt. 20, 1333 (1981).
[CrossRef] [PubMed]

1980 (1)

M. C. Gupta, S. D. Hong, A. Gupta, J. Moacanin, “Thermal Diffusivity Measurements Using a Pulsed Dual-Beam Thermal Lens Technique,” Appl. Phys. Lett. 37, 505 (1980).
[CrossRef]

1979 (1)

1977 (1)

A. J. Twarowski, D. S. Kliger, “Multiphoton Absorption Spectra Using Thermal Blooming,” Chem. Phys. 20, 253 (1977).
[CrossRef]

Amer, N. M.

Bailey, R. T.

R. T. Bailey, F. R. Cruickshank, D. Pugh, A. McLeod, W. Johnstone, “Gas Phase Thermal Diffusivities by a Thermal Lens Technique,” Chem. Phys. 68, 351 (1982).
[CrossRef]

R. T. Bailey, F. R. Cruickshank, D. Pugh, W. Johnstone, “Pulsed Source Thermal Lens,” J. Chem. Soc. Faraday Trans 2 77, 1387 (1981).
[CrossRef]

Bialkowski, S. E.

G. R. Long, S. E. Bialkowski, “Pulsed Infrared Laser Thermal Lens Spectrophotometric Determination of Trace-Level Analytes,” Anal. Chem. 56, 2806 (1984).
[CrossRef]

Boccara, A. C.

Carter, C. A.

C. A. Carter, J. M. Harris, “Comparison of Models Describing the Thermal Lens Effect,” Anal. Chem. 55, 1256 (1983).
[CrossRef]

Cruickshank, F. R.

R. T. Bailey, F. R. Cruickshank, D. Pugh, A. McLeod, W. Johnstone, “Gas Phase Thermal Diffusivities by a Thermal Lens Technique,” Chem. Phys. 68, 351 (1982).
[CrossRef]

R. T. Bailey, F. R. Cruickshank, D. Pugh, W. Johnstone, “Pulsed Source Thermal Lens,” J. Chem. Soc. Faraday Trans 2 77, 1387 (1981).
[CrossRef]

Fang, H. L.

H. L. Fang, R. L. Swofford “The Thermal Lens in Absorption Spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, Ed. (Academic, New York, 1983), Chap. 3.

Fournier, D.

Gupta, A.

M. C. Gupta, S. D. Hong, A. Gupta, J. Moacanin, “Thermal Diffusivity Measurements Using a Pulsed Dual-Beam Thermal Lens Technique,” Appl. Phys. Lett. 37, 505 (1980).
[CrossRef]

Gupta, M. C.

M. C. Gupta, S. D. Hong, A. Gupta, J. Moacanin, “Thermal Diffusivity Measurements Using a Pulsed Dual-Beam Thermal Lens Technique,” Appl. Phys. Lett. 37, 505 (1980).
[CrossRef]

Harris, J. M.

C. A. Carter, J. M. Harris, “Comparison of Models Describing the Thermal Lens Effect,” Anal. Chem. 55, 1256 (1983).
[CrossRef]

Hong, S. D.

M. C. Gupta, S. D. Hong, A. Gupta, J. Moacanin, “Thermal Diffusivity Measurements Using a Pulsed Dual-Beam Thermal Lens Technique,” Appl. Phys. Lett. 37, 505 (1980).
[CrossRef]

Imasaka, T.

K. Mori, T. Imasaka, N. Ishibashi, “Thermal Lens Spectrophotometry Based on Pulsed Laser Excitation,” Anal. Chem. 54, 2034 (1982).
[CrossRef]

Ishibashi, N.

K. Mori, T. Imasaka, N. Ishibashi, “Thermal Lens Spectrophotometry Based on Pulsed Laser Excitation,” Anal. Chem. 54, 2034 (1982).
[CrossRef]

Jackson, W. B.

Johnstone, W.

R. T. Bailey, F. R. Cruickshank, D. Pugh, A. McLeod, W. Johnstone, “Gas Phase Thermal Diffusivities by a Thermal Lens Technique,” Chem. Phys. 68, 351 (1982).
[CrossRef]

R. T. Bailey, F. R. Cruickshank, D. Pugh, W. Johnstone, “Pulsed Source Thermal Lens,” J. Chem. Soc. Faraday Trans 2 77, 1387 (1981).
[CrossRef]

Kliger, D. S.

A. J. Twarowski, D. S. Kliger, “Multiphoton Absorption Spectra Using Thermal Blooming,” Chem. Phys. 20, 253 (1977).
[CrossRef]

Long, G. R.

G. R. Long, S. E. Bialkowski, “Pulsed Infrared Laser Thermal Lens Spectrophotometric Determination of Trace-Level Analytes,” Anal. Chem. 56, 2806 (1984).
[CrossRef]

McLeod, A.

R. T. Bailey, F. R. Cruickshank, D. Pugh, A. McLeod, W. Johnstone, “Gas Phase Thermal Diffusivities by a Thermal Lens Technique,” Chem. Phys. 68, 351 (1982).
[CrossRef]

Miller, D. A. B.

Moacanin, J.

M. C. Gupta, S. D. Hong, A. Gupta, J. Moacanin, “Thermal Diffusivity Measurements Using a Pulsed Dual-Beam Thermal Lens Technique,” Appl. Phys. Lett. 37, 505 (1980).
[CrossRef]

Mori, K.

K. Mori, T. Imasaka, N. Ishibashi, “Thermal Lens Spectrophotometry Based on Pulsed Laser Excitation,” Anal. Chem. 54, 2034 (1982).
[CrossRef]

Pugh, D.

R. T. Bailey, F. R. Cruickshank, D. Pugh, A. McLeod, W. Johnstone, “Gas Phase Thermal Diffusivities by a Thermal Lens Technique,” Chem. Phys. 68, 351 (1982).
[CrossRef]

R. T. Bailey, F. R. Cruickshank, D. Pugh, W. Johnstone, “Pulsed Source Thermal Lens,” J. Chem. Soc. Faraday Trans 2 77, 1387 (1981).
[CrossRef]

Smith, S. D.

Swofford, R. L.

H. L. Fang, R. L. Swofford “The Thermal Lens in Absorption Spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, Ed. (Academic, New York, 1983), Chap. 3.

Twarowski, A. J.

A. J. Twarowski, D. S. Kliger, “Multiphoton Absorption Spectra Using Thermal Blooming,” Chem. Phys. 20, 253 (1977).
[CrossRef]

Weaire, D.

Wherrett, B. S.

Anal. Chem. (3)

K. Mori, T. Imasaka, N. Ishibashi, “Thermal Lens Spectrophotometry Based on Pulsed Laser Excitation,” Anal. Chem. 54, 2034 (1982).
[CrossRef]

C. A. Carter, J. M. Harris, “Comparison of Models Describing the Thermal Lens Effect,” Anal. Chem. 55, 1256 (1983).
[CrossRef]

G. R. Long, S. E. Bialkowski, “Pulsed Infrared Laser Thermal Lens Spectrophotometric Determination of Trace-Level Analytes,” Anal. Chem. 56, 2806 (1984).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. C. Gupta, S. D. Hong, A. Gupta, J. Moacanin, “Thermal Diffusivity Measurements Using a Pulsed Dual-Beam Thermal Lens Technique,” Appl. Phys. Lett. 37, 505 (1980).
[CrossRef]

Chem. Phys. (2)

A. J. Twarowski, D. S. Kliger, “Multiphoton Absorption Spectra Using Thermal Blooming,” Chem. Phys. 20, 253 (1977).
[CrossRef]

R. T. Bailey, F. R. Cruickshank, D. Pugh, A. McLeod, W. Johnstone, “Gas Phase Thermal Diffusivities by a Thermal Lens Technique,” Chem. Phys. 68, 351 (1982).
[CrossRef]

J. Chem. Soc. Faraday Trans 2 (1)

R. T. Bailey, F. R. Cruickshank, D. Pugh, W. Johnstone, “Pulsed Source Thermal Lens,” J. Chem. Soc. Faraday Trans 2 77, 1387 (1981).
[CrossRef]

Opt. Lett. (1)

Other (1)

H. L. Fang, R. L. Swofford “The Thermal Lens in Absorption Spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, Ed. (Academic, New York, 1983), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison of the parabolic lens theory A to the phase shift theory B for ωp = 0.8 mm, ω0 = 0.8 mm, d = 3.61 m.

Fig. 2
Fig. 2

Comparison of the parabolic lens theory A to that of the phase shift B for ωp = 0.8 mm, ω0 = 0.025 mm, d = 3.61 m.

Fig. 3
Fig. 3

Relative temporal TLS signals for the parabolic lens theory A and phase shift theory B for Δφ = 0.001, ωp = 0.8 mm, ω0 = 0.8 mm, d = 3.61 m. The magnitude of B is a factor of 6 less than that of A on an absolute basis.

Fig. 4
Fig. 4

Ratio of the parabolic lens TLS signal to that of the phase shift for conditions as in Fig. 3.

Fig. 5
Fig. 5

Phase shift TLS signal as a function of monitor beam waist. Conditions are those of Fig. 3.

Fig. 6
Fig. 6

Comparison of parabolic lens A to phase shift B for conditions identical to that of Fig. 1 but with a different signal definition.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

n ( r , t ) = n 0 + ( d n d T ) 2 ln 10 A E p π ω p 2 ( 1 + 2 t / t c ) φ C p exp [ 2 r 2 ω p 2 ( 1 + 2 t / t c ) ] ,
1 f ( t ) = 1 n 0 d n d T 8 ln 10 A E p π φ C P [ ω p 2 ( 1 + 2 t / t c ) ] 2 .
I ( t ) I ( ) I ( t ) = 2 d f ( t ) [ z d + ( z 2 + z R 2 ) z R 2 + ( d + z ) 2 ] ( d f ( t ) ) 2 [ z R 2 + z 2 z R 2 + ( d + z ) 2 ] ,
Δ φ = 2 π l n 0 ( d n d T ) d T .
1 f 0 = 4 l n 0 ω p 2 ( d n d T ) d T ,
Δ φ = π ω p 2 2 λ ( 1 f 0 ) ,
Δ φ / ( r , t ) = 2 π l λ [ n 0 n ( r , t ) ] .
E ( r , o ) = E ( o , o ) exp [ r 2 ω 0 2 + i Δ φ ( r , t ) ] .
E ( r , o ) = E ( o , o ) m = 0 [ i Δ φ ( o , t ) ] m m ! exp ( r 2 ω m 2 ) ,
E ( r , d ) = E ( o , o ) m = 0 [ i Δ φ ( o , t ) ] m m ! ( 1 + d 2 z m 2 ) 1 / 2 × exp { r 2 [ 1 ω m 2 ( d ) + i k 2 R m ( d ) ] + i P m ( d ) } ,
E ( o , d ) = E ( o , o ) m = 0 [ i Δ φ ( o , t ) ] m m ! ( 1 + d 2 / z m 2 ) 1 / 2 exp [ i P m ( d ) ] ,
1 f ( r ) = K exp ( 2 r 2 / ω p 2 ) { 4 r 2 ω p 2 1 } ,

Metrics