Abstract

An investigation of single pulse coherent anti-Stokes Raman spectroscopy (CARS) noise, determined by the analysis of broadband nonresonant spectra, is described. It is shown that the use of a single-mode rather than a multimode pump laser leads to a significant reduction of CARS noise (40%), down to the level exhibited by the Stokes spectral profile itself. This reduction in noise is attributed to the minimization of the effects due to random variations in the laser temporal profiles by using temporally smooth single-mode laser pumps. A measurement of detector shot noise is presented and its effect on CARS noise is described. The advantages of using a single-mode pump laser in CARS spectroscopy are discussed.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Harvey, Ed., Chemical Applications of Nonlinear Raman Spectroscopy (Academic, New York, 1981).
  2. S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
    [CrossRef]
  3. J. W. Nibler, G. V. Knighten, “Coherent Anti-Stokes Raman Spectroscopy,” in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer, Berlin, 1979), pp. 253–299.
    [CrossRef]
  4. R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984), pp. 213–309.
  5. D. R. Snelling, R. A. Sawchuk, G. J. Smallwood, “Multichannel Light Detectors and Their Use for CARS Spectroscopy,” Appl. Opt. 23, 4083 (1984).
    [CrossRef] [PubMed]
  6. A. C. Eckbreth, “CARS Thermometry in Practical Combustors,” Combust. Flame 39, 133 (1980).
    [CrossRef]
  7. L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, “Temperature and Species-Concentration Measurements in Turbulent Diffusion Flames by the CARS Technique,” AIAA Paper 82-0240 (1982).
  8. A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328 (1984).
    [CrossRef] [PubMed]
  9. A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Application of CARS to Turbulent Reacting Flows,” presented at the ASME One-Hundred Fifth Annual Winter Meeting, New Orleans (Dec. 1984).
  10. K. A. Marko, L. Rimai, “Space- and Time-Resolved Coherent Anti-Stokes Raman Spectroscopy for Combustion Diagnostics,” Opt. Lett. 4, 211 (1979).
    [CrossRef] [PubMed]
  11. L. A. Westling, M. G. Raymer, J. J. Snyder, “Single-Shot Spectral Measurements and Mode Correlations in a Multimode Pulsed Dye Laser,” J. Opt. Soc. Am. B 1, 150 (1984).
    [CrossRef]
  12. R. E. Teets, “Accurate Convolutions of Coherent Anti-Stokes Raman Spectra,” Opt. Lett. 9, 226 (1984).
    [CrossRef] [PubMed]
  13. H. Kataoka, S. Maeda, C. Hirose, “Effects of Laser Linewidth on the Coherent Anti-Stokes Raman Spectroscopy Spectral Profile,” Appl. Spectrosc. 36, 565 (1982).
    [CrossRef]
  14. L. A. Rahn, R. L. Farrow, R. P. Lucht, “Effects of Laser Field Statistics on Coherent Anti-Stokes Raman Spectroscopy Intensities,” Opt. Lett. 9, 223 (1984).
    [CrossRef] [PubMed]
  15. R. L. Farrow, L. A. Rahn, R. P. Lucht, “Effect of Non-Gaussian Pump Field Statistics on Unresolved CARS Spectra,” in Proceedings of the Ninth International Conference on Raman Spectroscopy (Chemical Society of Japan, Tokyo, 1984), pp. 340–341.

1984 (5)

1982 (1)

1981 (1)

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

1980 (1)

A. C. Eckbreth, “CARS Thermometry in Practical Combustors,” Combust. Flame 39, 133 (1980).
[CrossRef]

1979 (1)

Dobbs, G. M.

Druet, S. A. J.

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328 (1984).
[CrossRef] [PubMed]

A. C. Eckbreth, “CARS Thermometry in Practical Combustors,” Combust. Flame 39, 133 (1980).
[CrossRef]

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984), pp. 213–309.

A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Application of CARS to Turbulent Reacting Flows,” presented at the ASME One-Hundred Fifth Annual Winter Meeting, New Orleans (Dec. 1984).

Farrow, R. L.

L. A. Rahn, R. L. Farrow, R. P. Lucht, “Effects of Laser Field Statistics on Coherent Anti-Stokes Raman Spectroscopy Intensities,” Opt. Lett. 9, 223 (1984).
[CrossRef] [PubMed]

R. L. Farrow, L. A. Rahn, R. P. Lucht, “Effect of Non-Gaussian Pump Field Statistics on Unresolved CARS Spectra,” in Proceedings of the Ninth International Conference on Raman Spectroscopy (Chemical Society of Japan, Tokyo, 1984), pp. 340–341.

Goss, L. P.

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, “Temperature and Species-Concentration Measurements in Turbulent Diffusion Flames by the CARS Technique,” AIAA Paper 82-0240 (1982).

Hall, R. J.

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984), pp. 213–309.

Hirose, C.

Kataoka, H.

Knighten, G. V.

J. W. Nibler, G. V. Knighten, “Coherent Anti-Stokes Raman Spectroscopy,” in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer, Berlin, 1979), pp. 253–299.
[CrossRef]

Lucht, R. P.

L. A. Rahn, R. L. Farrow, R. P. Lucht, “Effects of Laser Field Statistics on Coherent Anti-Stokes Raman Spectroscopy Intensities,” Opt. Lett. 9, 223 (1984).
[CrossRef] [PubMed]

R. L. Farrow, L. A. Rahn, R. P. Lucht, “Effect of Non-Gaussian Pump Field Statistics on Unresolved CARS Spectra,” in Proceedings of the Ninth International Conference on Raman Spectroscopy (Chemical Society of Japan, Tokyo, 1984), pp. 340–341.

Maeda, S.

Marko, K. A.

Nibler, J. W.

J. W. Nibler, G. V. Knighten, “Coherent Anti-Stokes Raman Spectroscopy,” in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer, Berlin, 1979), pp. 253–299.
[CrossRef]

Rahn, L. A.

L. A. Rahn, R. L. Farrow, R. P. Lucht, “Effects of Laser Field Statistics on Coherent Anti-Stokes Raman Spectroscopy Intensities,” Opt. Lett. 9, 223 (1984).
[CrossRef] [PubMed]

R. L. Farrow, L. A. Rahn, R. P. Lucht, “Effect of Non-Gaussian Pump Field Statistics on Unresolved CARS Spectra,” in Proceedings of the Ninth International Conference on Raman Spectroscopy (Chemical Society of Japan, Tokyo, 1984), pp. 340–341.

Raymer, M. G.

Rimai, L.

Sawchuk, R. A.

Schreiber, P. W.

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, “Temperature and Species-Concentration Measurements in Turbulent Diffusion Flames by the CARS Technique,” AIAA Paper 82-0240 (1982).

Smallwood, G. J.

Snelling, D. R.

Snyder, J. J.

Stufflebeam, J. H.

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328 (1984).
[CrossRef] [PubMed]

A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Application of CARS to Turbulent Reacting Flows,” presented at the ASME One-Hundred Fifth Annual Winter Meeting, New Orleans (Dec. 1984).

Switzer, G. L.

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, “Temperature and Species-Concentration Measurements in Turbulent Diffusion Flames by the CARS Technique,” AIAA Paper 82-0240 (1982).

Taran, J. P. E.

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

Teets, R. E.

Tellex, P. A.

Trump, D. D.

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, “Temperature and Species-Concentration Measurements in Turbulent Diffusion Flames by the CARS Technique,” AIAA Paper 82-0240 (1982).

Westling, L. A.

Appl. Opt. (2)

Appl. Spectrosc. (1)

Combust. Flame (1)

A. C. Eckbreth, “CARS Thermometry in Practical Combustors,” Combust. Flame 39, 133 (1980).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Prog. Quantum Electron. (1)

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

Other (6)

J. W. Nibler, G. V. Knighten, “Coherent Anti-Stokes Raman Spectroscopy,” in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer, Berlin, 1979), pp. 253–299.
[CrossRef]

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984), pp. 213–309.

A. B. Harvey, Ed., Chemical Applications of Nonlinear Raman Spectroscopy (Academic, New York, 1981).

L. P. Goss, G. L. Switzer, D. D. Trump, P. W. Schreiber, “Temperature and Species-Concentration Measurements in Turbulent Diffusion Flames by the CARS Technique,” AIAA Paper 82-0240 (1982).

A. C. Eckbreth, J. H. Stufflebeam, “Considerations for the Application of CARS to Turbulent Reacting Flows,” presented at the ASME One-Hundred Fifth Annual Winter Meeting, New Orleans (Dec. 1984).

R. L. Farrow, L. A. Rahn, R. P. Lucht, “Effect of Non-Gaussian Pump Field Statistics on Unresolved CARS Spectra,” in Proceedings of the Ninth International Conference on Raman Spectroscopy (Chemical Society of Japan, Tokyo, 1984), pp. 340–341.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the Defence Research Establishment Ottawa CARS instrument.

Fig. 2
Fig. 2

TN-1223-4GI detector shot noise as a function of relative light intensity.

Fig. 3
Fig. 3

Average nonresonant CARS spectrum ( S ¯ i ) and a normalized single shot CARS spectrum (Yij) for typical multimode lasing configuration. Analysis bandwidth of 70 cm−1.

Fig. 4
Fig. 4

Temporal behavior of simultaneously monitored pump, Stokes, and CARS laser pulses for multimode and single-mode pump laser operation.

Fig. 5
Fig. 5

Comparison of temporal behavior at Stokes laser frequencies ω2 and ω 2. Spectral width of 4.6 cm−1 with central frequencies of 16463 and 16500 cm−1. Multimode pump laser operation.

Fig. 6
Fig. 6

Comparison of temporal behavior for a spectrally integrated Stokes laser pulse, ω2, and a 2-cm−1 spectral slice, ω2 (ν), centered at 16463 cm−1. Single-mode pump laser operation.

Fig. 7
Fig. 7

Hypothesized behavior of multimode, single pulse CARS generation.

Tables (4)

Tables Icon

Table I Nonresonant CARS Noise Utilizing a Multimode Pump Laser

Tables Icon

Table II Nonresonant CARS Noise Utilizing a Single-Mode Pump Laser

Tables Icon

Table III Stokes Laser Noise Utilizing a Multimode Pump Laser

Tables Icon

Table IV Stokes Laser Noise Utilizing a Single-mode Pump Laser

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S i j = I i j K i , i = 1 N diodes , j = 1 M pulses ,
S ¯ i = ( j I i j K i ) / M .
X i j = ( S i j / S ¯ i ) = ( I i j / j I i j ) × M .
Y i j = X i j / i = N L N U X i j .
σ N 2 = σ C 2 + σ D 2 .

Metrics