Abstract

An approach to CARS is described and demonstrated which permits CARS to be generated from a multiplicity of species simultaneously. The technique employs two independent broadband Stokes sources in combination with a pump laser. In addition to the two separate two-color wave-mixing processes between the pump and Stokes lasers, spectrally resolved CARS is produced in a three-color process from species whose Raman resonances correspond to the frequency differences of the two broadband sources. CARS is thus derived from a large number of species simultaneously removing the nominal limitation of CARS to interrogate only one constituent at a time.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
    [CrossRef]
  2. J. F. Schooley, Ed., Temperature, Its Measurement and Control in Science and Industry, Vol. 5 (American Institute of Physics, New York, 1982), pp. 575–620.
  3. J. F. Ready, R. K. Erf, Eds., Laser Applications, Vol. 5 (Academic, Orlando, 1984), pp. 129–309.
  4. A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328 (1984).
    [CrossRef] [PubMed]
  5. L. E. Harris, “Broadband N2 and N2O CARS Spectra from a CH4/N2O Flame,” Chem. Phys. Lett. 93, 335 (1982).
    [CrossRef]
  6. Y. Prior, “Three-Dimensional Phase Matching in Four-Wave Mixing,” Appl. Opt. 19, 1741 (1980).
    [CrossRef]
  7. J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for Rotational Raman Studies,” Opt. Lett. 5, 380 (1980).
    [CrossRef] [PubMed]
  8. G. L. Switzer et al., “Simultaneous CARS and Luminosity Measurements in a Bluff-Body Combustor,” AIAA Paper 83-1481 (1983).
  9. R. J. Hall, L. R. Boedeker, “CARS Thermometry in Fuel-Rich Combustion Zones,” Appl. Opt. 23, 1340 (1984).
    [CrossRef] [PubMed]
  10. M. A. Yuratich, “Effects of Laser Linewidth on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625 (1979).
    [CrossRef]
  11. Laser Dyes Catalog, Exciton Chemical Company, Inc., Dayton, Oho 45431.
  12. W. B. Roh, P. W. Schreiber, “Pressure Dependence of Integrated CARS Power,” Appl. Opt. 17, 1418 (1978).
    [CrossRef] [PubMed]

1984 (2)

1982 (1)

L. E. Harris, “Broadband N2 and N2O CARS Spectra from a CH4/N2O Flame,” Chem. Phys. Lett. 93, 335 (1982).
[CrossRef]

1981 (1)

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

1980 (2)

1979 (1)

M. A. Yuratich, “Effects of Laser Linewidth on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625 (1979).
[CrossRef]

1978 (1)

Boedeker, L. R.

Dobbs, G. M.

Druet, S. A. J.

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

Eckbreth, A. C.

Hall, R. J.

Harris, L. E.

L. E. Harris, “Broadband N2 and N2O CARS Spectra from a CH4/N2O Flame,” Chem. Phys. Lett. 93, 335 (1982).
[CrossRef]

Prior, Y.

Roh, W. B.

Schreiber, P. W.

Shirley, J. A.

Stufflebeam, J. H.

Switzer, G. L.

G. L. Switzer et al., “Simultaneous CARS and Luminosity Measurements in a Bluff-Body Combustor,” AIAA Paper 83-1481 (1983).

Taran, J. P. E.

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

Tellex, P. A.

Yuratich, M. A.

M. A. Yuratich, “Effects of Laser Linewidth on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625 (1979).
[CrossRef]

Appl. Opt. (4)

Chem. Phys. Lett. (1)

L. E. Harris, “Broadband N2 and N2O CARS Spectra from a CH4/N2O Flame,” Chem. Phys. Lett. 93, 335 (1982).
[CrossRef]

Mol. Phys. (1)

M. A. Yuratich, “Effects of Laser Linewidth on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625 (1979).
[CrossRef]

Opt. Lett. (1)

Prog. Quantum Electron. (1)

S. A. J. Druet, J. P. E. Taran, “CARS Spectroscopy,” Prog. Quantum Electron. 7, 1 (1981).
[CrossRef]

Other (4)

J. F. Schooley, Ed., Temperature, Its Measurement and Control in Science and Industry, Vol. 5 (American Institute of Physics, New York, 1982), pp. 575–620.

J. F. Ready, R. K. Erf, Eds., Laser Applications, Vol. 5 (Academic, Orlando, 1984), pp. 129–309.

G. L. Switzer et al., “Simultaneous CARS and Luminosity Measurements in a Bluff-Body Combustor,” AIAA Paper 83-1481 (1983).

Laser Dyes Catalog, Exciton Chemical Company, Inc., Dayton, Oho 45431.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dual broadband Stokes approach to simultaneous, multiple species CARS measurements.

Fig. 2
Fig. 2

Dual broadband CARS signature of N2 in room air generated from the three-color wave mixing of ω1, ω2, and ω 2. Spectral dispersion is 0.53 cm−1/pixel. The spectral resolution is 2.7 cm−1. The FWHH of the N2 CARS spectrum is 4.5 cm−1.

Fig. 3
Fig. 3

Laser beam arrangement for the dual broadband CARS experimental demonstrations. The beam geometry is shown just prior to the focusing field lens (INPUT) and after the recollimating field lens (OUTPUT) viewed against the direction of propagation, ω1 and ω2 are mixed via planar BOXCARS, while ω 1 , ω 2 and ω 1 , ω 2 , ω 2 are 3-D phase matched (folded BOXCARS).

Fig. 4
Fig. 4

Phase-matching diagrams for the individual wave-mixing combinations comprising dual broadband CARS.

Fig. 5
Fig. 5

Laser beam arrangement for dual broadband CARS in which all wave-mixing combinations are 3-D phase matched and each ω1 component participates in the three-color process.

Fig. 6
Fig. 6

Phase-matching geometry for the laser beam arrangement of Fig. 5. Two-color processes are phase matched about the central lens axis. The three-color processes are phase matched about the dashed axis residing in a plane inclined to the ω1 beam crossing plane.

Fig. 7
Fig. 7

Simultaneously generated dual broadband CARS signatures from N2, CO2, and H2O in the postflame zone of an ~1700 K premixed CH4–air flame. The dispersions are ~0.53 cm−1/pixel for N2, 0.59 cm−1/pixel for H2O, and 0.47 cm−1/pixel for CO2. In CO2 both the ν1 and 2ν2 bands are displayed.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

2 k 1 cos α = k 2 cos b + k c cos c ,
k 2 sin b = k c sin c ;
2 k 1 cos α = k 2 cos t + k h cos h ,
k 2 sin t = k h sin h ;
k 1 cos A + k 2 cos B = k 2 cos T + k n cos N ,
k 1 sin A = k 2 sin B ,
k 2 sin T = k n sin N .
2 k 1 = k 2 + k c ,
2 k 1 = k 2 + k h ,
k 1 + k 2 = k 2 + k n .
α 2 = b c , α 2 = k 2 k c b 2 , c = k 2 k c b ;
α 2 = t h , α 2 = k 2 k h t 2 , h = k 2 k h t ;
A B = N T , k 1 A = k 2 B , k 1 k 2 A 2 = k 2 k n T 2 .
k c = k 1 + Δ c , k 2 = k 1 Δ c , k h = k 1 + Δ h , k 2 = k 1 Δ h , k n = k 1 + Δ n = k 1 + Δ h Δ c
k 1 2 = k 2 k c ,
k 1 2 = k 2 k h ,
k 1 k 2 = k 2 k n .
r 1 = α f , r 2 = b f , r 2 = t f ,
R 1 = A f , R 2 = B f , R 2 = T f .
R 1 R 2 = A B = k 2 k 1 ,
R 1 + R 2 = r 1 2 + r 2 2 .
R 2 2 = R 2 2 + ( r 2 r 2 ) 2 2 R 2 ( r 2 r 2 ) cos ( 180 P ) ,
cos P = r 2 r 1 2 + r 2 2 .
T 2 = B 2 + ( t b ) 2 + 2 B ( t b ) b A + B .
( A + B ) 2 = α 2 + b 2 ,
α 2 = ( k 1 + k 2 ) 2 2 k 1 k 2 A 2 ,
T 2 = k 1 2 k 2 2 A 2 + k 1 ( 1 k 2 1 k 2 ) 2 ( k 1 + k 2 ) 2 2 k 2 A 2 + k 1 2 k 2 2 ( 1 k 2 1 k 2 ) ( k 1 + k 2 ) A 2 .
k 2 k 2 T 2 = k 1 [ k 1 + k c k n ( k h k c ) ] A 2 .
k 2 k 2 T 2 = k 1 k n A 2 ,

Metrics