Abstract

The use of resonant piezoceramic transducers in the pulsed photoacoustic technique and the effect of the focusing of the probing beam have been investigated experimentally. The improved sensitivity for resonant detection and for more tightly focused probing beams has been verified. The constraints imposed when working with tightly focused beams are noted.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. N. Patel, A. C. Tam, “Pulsed Photoacoustic Spectroscopy of Condensed Matter,” Rev. Mod. Phys. 53, 517 (1981).
    [CrossRef]
  2. A. Atalar, “Photoacoustic Effect as a Liquid Absorbance Detector,” Appl. Opt. 19, 3204 (1980).
    [CrossRef] [PubMed]
  3. J. A. Burt, “The Response of a Fluid-filled Piezoceramic Cylinder to Pressure Generated by an Axial Laser Pulse,” J. Acoust. Soc. Am. 65, 1164 (1979).
    [CrossRef]
  4. C. L. Hu, “Spherical Model of an Acoustical Wave Generated by Rapid Laser Heating in a Liquid,” J. Acoust. Soc. Am. 46, 728 (1969).
    [CrossRef]
  5. M. W. Sigrist, F. K. Kneubühl, “Laser Generated Stress Waves in Liquids,” J. Acoust. Soc. Am. 64, 1652 (1978).
    [CrossRef]
  6. J. M. Heritier, “Electrostrictive Limit and Focusing Effects in Pulsed Photoacoustic Detection,” Opt. Commun. 44, 267 (1983).
    [CrossRef]
  7. B. Sullivan, A. C. Tam, “Profile of Laser-Produced Acoustic Pulse in a Liquid,” J. Acoust. Soc. Am. 75, 437 (1984).
    [CrossRef]
  8. A. Migliori, T. J. Hofler, “Simple, Reproducible, Acoustically Transparent Pressure Transducer with an 18-ns Rise Time,” Rev. Sci. Instrum. 52, 1865 (1981).
    [CrossRef]
  9. A. Karbach, R. Roper, P. Hess, “Computer-Controlled Performance of Photoacoustic Resonance Experiments,” Rev. Sci. Instrum. 55, 892 (1984).
    [CrossRef]
  10. W. P. Mason, Ed., Physical Acoustics, Vol. 1, Part A (Academic, New York, 1964).
  11. R. A. Langevin, “The Electro-acoustic Sensitivity of Cylindrical Ceramic Tubes,” J. Acoust. Soc. Am. 26, 421 (1954).
    [CrossRef]
  12. J. F. Haskings, J. L. Walsh, “Vibrations of Ferroelectric Cylindrical Shells with Transverse Isotropy. I. Radially Polarized Case,” J. Acoust. Soc. Am. 29, 729 (1957).
    [CrossRef]
  13. V. N. Lazutkin, Yu. V. Tsyganov, “Axisymmetric Modes and Electrical Impedance of Radially Polarized Piezoceramic Rings,” Sov. Phys. Acoust. 17, 330 (1972).
  14. J. A. Burt, “Extension of the Theory of the Fluid-filled Optoacoustic Cell,” J. Phys. D 13, 1985 (1980).
    [CrossRef]
  15. E. Skudrzyk, The Foundations of Acoustics (Springer, New York, 1971).
    [CrossRef]

1984

B. Sullivan, A. C. Tam, “Profile of Laser-Produced Acoustic Pulse in a Liquid,” J. Acoust. Soc. Am. 75, 437 (1984).
[CrossRef]

A. Karbach, R. Roper, P. Hess, “Computer-Controlled Performance of Photoacoustic Resonance Experiments,” Rev. Sci. Instrum. 55, 892 (1984).
[CrossRef]

1983

J. M. Heritier, “Electrostrictive Limit and Focusing Effects in Pulsed Photoacoustic Detection,” Opt. Commun. 44, 267 (1983).
[CrossRef]

1981

A. Migliori, T. J. Hofler, “Simple, Reproducible, Acoustically Transparent Pressure Transducer with an 18-ns Rise Time,” Rev. Sci. Instrum. 52, 1865 (1981).
[CrossRef]

C. K. N. Patel, A. C. Tam, “Pulsed Photoacoustic Spectroscopy of Condensed Matter,” Rev. Mod. Phys. 53, 517 (1981).
[CrossRef]

1980

A. Atalar, “Photoacoustic Effect as a Liquid Absorbance Detector,” Appl. Opt. 19, 3204 (1980).
[CrossRef] [PubMed]

J. A. Burt, “Extension of the Theory of the Fluid-filled Optoacoustic Cell,” J. Phys. D 13, 1985 (1980).
[CrossRef]

1979

J. A. Burt, “The Response of a Fluid-filled Piezoceramic Cylinder to Pressure Generated by an Axial Laser Pulse,” J. Acoust. Soc. Am. 65, 1164 (1979).
[CrossRef]

1978

M. W. Sigrist, F. K. Kneubühl, “Laser Generated Stress Waves in Liquids,” J. Acoust. Soc. Am. 64, 1652 (1978).
[CrossRef]

1972

V. N. Lazutkin, Yu. V. Tsyganov, “Axisymmetric Modes and Electrical Impedance of Radially Polarized Piezoceramic Rings,” Sov. Phys. Acoust. 17, 330 (1972).

1969

C. L. Hu, “Spherical Model of an Acoustical Wave Generated by Rapid Laser Heating in a Liquid,” J. Acoust. Soc. Am. 46, 728 (1969).
[CrossRef]

1957

J. F. Haskings, J. L. Walsh, “Vibrations of Ferroelectric Cylindrical Shells with Transverse Isotropy. I. Radially Polarized Case,” J. Acoust. Soc. Am. 29, 729 (1957).
[CrossRef]

1954

R. A. Langevin, “The Electro-acoustic Sensitivity of Cylindrical Ceramic Tubes,” J. Acoust. Soc. Am. 26, 421 (1954).
[CrossRef]

Atalar, A.

Burt, J. A.

J. A. Burt, “Extension of the Theory of the Fluid-filled Optoacoustic Cell,” J. Phys. D 13, 1985 (1980).
[CrossRef]

J. A. Burt, “The Response of a Fluid-filled Piezoceramic Cylinder to Pressure Generated by an Axial Laser Pulse,” J. Acoust. Soc. Am. 65, 1164 (1979).
[CrossRef]

Haskings, J. F.

J. F. Haskings, J. L. Walsh, “Vibrations of Ferroelectric Cylindrical Shells with Transverse Isotropy. I. Radially Polarized Case,” J. Acoust. Soc. Am. 29, 729 (1957).
[CrossRef]

Heritier, J. M.

J. M. Heritier, “Electrostrictive Limit and Focusing Effects in Pulsed Photoacoustic Detection,” Opt. Commun. 44, 267 (1983).
[CrossRef]

Hess, P.

A. Karbach, R. Roper, P. Hess, “Computer-Controlled Performance of Photoacoustic Resonance Experiments,” Rev. Sci. Instrum. 55, 892 (1984).
[CrossRef]

Hofler, T. J.

A. Migliori, T. J. Hofler, “Simple, Reproducible, Acoustically Transparent Pressure Transducer with an 18-ns Rise Time,” Rev. Sci. Instrum. 52, 1865 (1981).
[CrossRef]

Hu, C. L.

C. L. Hu, “Spherical Model of an Acoustical Wave Generated by Rapid Laser Heating in a Liquid,” J. Acoust. Soc. Am. 46, 728 (1969).
[CrossRef]

Karbach, A.

A. Karbach, R. Roper, P. Hess, “Computer-Controlled Performance of Photoacoustic Resonance Experiments,” Rev. Sci. Instrum. 55, 892 (1984).
[CrossRef]

Kneubühl, F. K.

M. W. Sigrist, F. K. Kneubühl, “Laser Generated Stress Waves in Liquids,” J. Acoust. Soc. Am. 64, 1652 (1978).
[CrossRef]

Langevin, R. A.

R. A. Langevin, “The Electro-acoustic Sensitivity of Cylindrical Ceramic Tubes,” J. Acoust. Soc. Am. 26, 421 (1954).
[CrossRef]

Lazutkin, V. N.

V. N. Lazutkin, Yu. V. Tsyganov, “Axisymmetric Modes and Electrical Impedance of Radially Polarized Piezoceramic Rings,” Sov. Phys. Acoust. 17, 330 (1972).

Migliori, A.

A. Migliori, T. J. Hofler, “Simple, Reproducible, Acoustically Transparent Pressure Transducer with an 18-ns Rise Time,” Rev. Sci. Instrum. 52, 1865 (1981).
[CrossRef]

Patel, C. K. N.

C. K. N. Patel, A. C. Tam, “Pulsed Photoacoustic Spectroscopy of Condensed Matter,” Rev. Mod. Phys. 53, 517 (1981).
[CrossRef]

Roper, R.

A. Karbach, R. Roper, P. Hess, “Computer-Controlled Performance of Photoacoustic Resonance Experiments,” Rev. Sci. Instrum. 55, 892 (1984).
[CrossRef]

Sigrist, M. W.

M. W. Sigrist, F. K. Kneubühl, “Laser Generated Stress Waves in Liquids,” J. Acoust. Soc. Am. 64, 1652 (1978).
[CrossRef]

Skudrzyk, E.

E. Skudrzyk, The Foundations of Acoustics (Springer, New York, 1971).
[CrossRef]

Sullivan, B.

B. Sullivan, A. C. Tam, “Profile of Laser-Produced Acoustic Pulse in a Liquid,” J. Acoust. Soc. Am. 75, 437 (1984).
[CrossRef]

Tam, A. C.

B. Sullivan, A. C. Tam, “Profile of Laser-Produced Acoustic Pulse in a Liquid,” J. Acoust. Soc. Am. 75, 437 (1984).
[CrossRef]

C. K. N. Patel, A. C. Tam, “Pulsed Photoacoustic Spectroscopy of Condensed Matter,” Rev. Mod. Phys. 53, 517 (1981).
[CrossRef]

Tsyganov, Yu. V.

V. N. Lazutkin, Yu. V. Tsyganov, “Axisymmetric Modes and Electrical Impedance of Radially Polarized Piezoceramic Rings,” Sov. Phys. Acoust. 17, 330 (1972).

Walsh, J. L.

J. F. Haskings, J. L. Walsh, “Vibrations of Ferroelectric Cylindrical Shells with Transverse Isotropy. I. Radially Polarized Case,” J. Acoust. Soc. Am. 29, 729 (1957).
[CrossRef]

Appl. Opt.

J. Acoust. Soc. Am.

R. A. Langevin, “The Electro-acoustic Sensitivity of Cylindrical Ceramic Tubes,” J. Acoust. Soc. Am. 26, 421 (1954).
[CrossRef]

J. F. Haskings, J. L. Walsh, “Vibrations of Ferroelectric Cylindrical Shells with Transverse Isotropy. I. Radially Polarized Case,” J. Acoust. Soc. Am. 29, 729 (1957).
[CrossRef]

J. A. Burt, “The Response of a Fluid-filled Piezoceramic Cylinder to Pressure Generated by an Axial Laser Pulse,” J. Acoust. Soc. Am. 65, 1164 (1979).
[CrossRef]

C. L. Hu, “Spherical Model of an Acoustical Wave Generated by Rapid Laser Heating in a Liquid,” J. Acoust. Soc. Am. 46, 728 (1969).
[CrossRef]

M. W. Sigrist, F. K. Kneubühl, “Laser Generated Stress Waves in Liquids,” J. Acoust. Soc. Am. 64, 1652 (1978).
[CrossRef]

B. Sullivan, A. C. Tam, “Profile of Laser-Produced Acoustic Pulse in a Liquid,” J. Acoust. Soc. Am. 75, 437 (1984).
[CrossRef]

J. Phys. D

J. A. Burt, “Extension of the Theory of the Fluid-filled Optoacoustic Cell,” J. Phys. D 13, 1985 (1980).
[CrossRef]

Opt. Commun.

J. M. Heritier, “Electrostrictive Limit and Focusing Effects in Pulsed Photoacoustic Detection,” Opt. Commun. 44, 267 (1983).
[CrossRef]

Rev. Mod. Phys.

C. K. N. Patel, A. C. Tam, “Pulsed Photoacoustic Spectroscopy of Condensed Matter,” Rev. Mod. Phys. 53, 517 (1981).
[CrossRef]

Rev. Sci. Instrum.

A. Migliori, T. J. Hofler, “Simple, Reproducible, Acoustically Transparent Pressure Transducer with an 18-ns Rise Time,” Rev. Sci. Instrum. 52, 1865 (1981).
[CrossRef]

A. Karbach, R. Roper, P. Hess, “Computer-Controlled Performance of Photoacoustic Resonance Experiments,” Rev. Sci. Instrum. 55, 892 (1984).
[CrossRef]

Sov. Phys. Acoust.

V. N. Lazutkin, Yu. V. Tsyganov, “Axisymmetric Modes and Electrical Impedance of Radially Polarized Piezoceramic Rings,” Sov. Phys. Acoust. 17, 330 (1972).

Other

E. Skudrzyk, The Foundations of Acoustics (Springer, New York, 1971).
[CrossRef]

W. P. Mason, Ed., Physical Acoustics, Vol. 1, Part A (Academic, New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Hoop and thickness mode sensitivities of a piezoceramic cylinder immersed in light mineral oil to an internal pressure as a function of frequency.

Fig. 2
Fig. 2

Piezoceramic cylinder with laser beam offset from the axis but parallel to it.

Fig. 3
Fig. 3

Piezoceramic cylinder with skewed laser beam.

Fig. 4
Fig. 4

Maximum peak-to-peak photoacoustic signal as a function of normalized beam waist.

Fig. 5
Fig. 5

Oscilloscope traces of photoacoustic signal for two beam waists: (a) w0 = 0.4 cm (horizontal scale 20 μsec/div, vertical scale 0.1 mV/div); (b) w0 = 0.2 mm (horizontal scale 20 μsec/div, vertical scale 0.2 mV/div).

Fig. 6
Fig. 6

Equivalent electromechanical circuit for a piezoceramic cylinder in the hoop mode.

Fig. 7
Fig. 7

Equivalent electromechanical circuit for a piezoceramic cylinder in the thickness mode.

Tables (1)

Tables Icon

Table I Response of a Piezoceramic Cylinder to a 0.1-mJ Laser Pulse Propagating in Light Mineral Oil (a = 0.05 cm−1)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

p ( r , ω ) = E ( a β / C p ) ω exp [ ( υ ω 2 υ ) 2 ] H 0 ( 1 ) ( ω υ r ) ,
f c = υ e c / ( 2 π a ) ,
f d = υ 33 D / ( 2 d ) ,
H n ( 1 ) , ( 2 ) ( υ ω r ) exp ( i n x ) = m = J m ( υ ω r 0 ) H n + m ( 1 ) , ( 2 ) ( υ ω a ) · exp ( i m ϕ ) ,
θ < υ 2 l f .
C 0 = ( l k 31 2 ) C T C T = 2 π a l ε 33 T / t , C m = a s 11 E / 2 π l t , M = 2 π t l a ρ , N = 2 π t l d 31 / s 11 E , C 01 = 2 π a l / t β 33 s , Z 0 = 2 π a l υ t D , N l = C 01 h 33 ,
Z l = 2 π a l ρ υ e H 0 ( 2 ) ( k a ) j H 0 ( 2 ) ( k a ) .

Metrics