Abstract

An optical technique is described that uses coherent and incoherent optical scintillation to measure the path-averaged value of the turbulence inner scale. The technique is verified by comparison with an in situ measurement, and inner scale values obtained 1.5 m above the ground over a 24-h period are shown.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Hill, G. R. Ochs, “Surface-Layer Micrometeorology by Optical Scintillation Techniques,” in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TuC16.
  2. J. C. Wyngaard, J. C. Kaimal, G. R. Ochs, R. J. Hill, D. C. Sorensen, “An Optical Heat Flux Experiment,” in Fourth Symposium on Meteorological Observations and Instrumentation, 10–14 Apr., Denver, Color. (American Meteorological Society, Boston, 1978).
  3. R. J. Hill, G. R. Ochs, “Fine Calibration of Large-Aperture Optical Scintillometers and an Optical Estimate of Inner Scale of Turbulence,” Appl. Opt. 17, 3608 (1978).
    [CrossRef] [PubMed]
  4. J. C. Wyngaard, S. F. Clifford, “Estimating Momentum, Heat and Moisture Fluxes from Structure Parameters,” J. Atmos. Sci. 35, 1204 (1978).
    [CrossRef]
  5. P. M. Livingston, “Proposed Method of Inner Scale Measurement in a Turbulent Atmosphere,” Appl. Opt. 11, 684 (1972).
    [CrossRef] [PubMed]
  6. Ting-i Wang, G. R. Ochs, S. F. Clifford, “A Saturation-Resistant Optical Scintillometer to Measure Cn2,” J. Opt. Soc. Am. 68, 334 (1978).
    [CrossRef]
  7. R. J. Hill, S. F. Clifford, “Modified Spectrum of Atmospheric Temperature Fluctuations and its Application to Optical Propagation,” J. Opt. Soc. Am. 68, 892 (1978).
    [CrossRef]
  8. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter Press, Jerusalem, 1971).
  9. R. J. Hill, “Models of the Scalar Spectrum for Turbulent Advection,” J. Fluid Mech. 88, 541 (1978).
    [CrossRef]

1978 (5)

1972 (1)

Clifford, S. F.

Hill, R. J.

R. J. Hill, “Models of the Scalar Spectrum for Turbulent Advection,” J. Fluid Mech. 88, 541 (1978).
[CrossRef]

R. J. Hill, S. F. Clifford, “Modified Spectrum of Atmospheric Temperature Fluctuations and its Application to Optical Propagation,” J. Opt. Soc. Am. 68, 892 (1978).
[CrossRef]

R. J. Hill, G. R. Ochs, “Fine Calibration of Large-Aperture Optical Scintillometers and an Optical Estimate of Inner Scale of Turbulence,” Appl. Opt. 17, 3608 (1978).
[CrossRef] [PubMed]

R. J. Hill, G. R. Ochs, “Surface-Layer Micrometeorology by Optical Scintillation Techniques,” in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TuC16.

J. C. Wyngaard, J. C. Kaimal, G. R. Ochs, R. J. Hill, D. C. Sorensen, “An Optical Heat Flux Experiment,” in Fourth Symposium on Meteorological Observations and Instrumentation, 10–14 Apr., Denver, Color. (American Meteorological Society, Boston, 1978).

Kaimal, J. C.

J. C. Wyngaard, J. C. Kaimal, G. R. Ochs, R. J. Hill, D. C. Sorensen, “An Optical Heat Flux Experiment,” in Fourth Symposium on Meteorological Observations and Instrumentation, 10–14 Apr., Denver, Color. (American Meteorological Society, Boston, 1978).

Livingston, P. M.

Ochs, G. R.

R. J. Hill, G. R. Ochs, “Fine Calibration of Large-Aperture Optical Scintillometers and an Optical Estimate of Inner Scale of Turbulence,” Appl. Opt. 17, 3608 (1978).
[CrossRef] [PubMed]

Ting-i Wang, G. R. Ochs, S. F. Clifford, “A Saturation-Resistant Optical Scintillometer to Measure Cn2,” J. Opt. Soc. Am. 68, 334 (1978).
[CrossRef]

J. C. Wyngaard, J. C. Kaimal, G. R. Ochs, R. J. Hill, D. C. Sorensen, “An Optical Heat Flux Experiment,” in Fourth Symposium on Meteorological Observations and Instrumentation, 10–14 Apr., Denver, Color. (American Meteorological Society, Boston, 1978).

R. J. Hill, G. R. Ochs, “Surface-Layer Micrometeorology by Optical Scintillation Techniques,” in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TuC16.

Sorensen, D. C.

J. C. Wyngaard, J. C. Kaimal, G. R. Ochs, R. J. Hill, D. C. Sorensen, “An Optical Heat Flux Experiment,” in Fourth Symposium on Meteorological Observations and Instrumentation, 10–14 Apr., Denver, Color. (American Meteorological Society, Boston, 1978).

Tatarskii, V. I.

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter Press, Jerusalem, 1971).

Wang, Ting-i

Wyngaard, J. C.

J. C. Wyngaard, S. F. Clifford, “Estimating Momentum, Heat and Moisture Fluxes from Structure Parameters,” J. Atmos. Sci. 35, 1204 (1978).
[CrossRef]

J. C. Wyngaard, J. C. Kaimal, G. R. Ochs, R. J. Hill, D. C. Sorensen, “An Optical Heat Flux Experiment,” in Fourth Symposium on Meteorological Observations and Instrumentation, 10–14 Apr., Denver, Color. (American Meteorological Society, Boston, 1978).

Appl. Opt. (2)

J. Atmos. Sci. (1)

J. C. Wyngaard, S. F. Clifford, “Estimating Momentum, Heat and Moisture Fluxes from Structure Parameters,” J. Atmos. Sci. 35, 1204 (1978).
[CrossRef]

J. Fluid Mech. (1)

R. J. Hill, “Models of the Scalar Spectrum for Turbulent Advection,” J. Fluid Mech. 88, 541 (1978).
[CrossRef]

J. Opt. Soc. Am. (2)

Other (3)

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter Press, Jerusalem, 1971).

R. J. Hill, G. R. Ochs, “Surface-Layer Micrometeorology by Optical Scintillation Techniques,” in Technical Digest, Topical Meeting on Optical Techniques for Remote Probing of the Atmosphere (Optical Society of America, Washington, D.C., 1983), paper TuC16.

J. C. Wyngaard, J. C. Kaimal, G. R. Ochs, R. J. Hill, D. C. Sorensen, “An Optical Heat Flux Experiment,” in Fourth Symposium on Meteorological Observations and Instrumentation, 10–14 Apr., Denver, Color. (American Meteorological Society, Boston, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Comparison of optical and in situ measurement of inner scale. The coherent light system employed a spherical-wave laser and a 1-mm diam receiver; the incoherent system employed 4.4-cm diam transmitting and receiving apertures. The asterisks are 5-min averages from optical measurements on a 260-m path vs inner scale derived from hot-wire anemometer probes. The solid line is the theoretical relationship from Hill and Clifford7 and Hill and Ochs3; the dashed line is based on the Tatarski8 model.

Fig. 2
Fig. 2

Optical measurement of inner scale over a 24-h period. Inner scale is plotted by the solid line and wind speed by the dotted line using 10-min averages.

Fig. 3
Fig. 3

Ratio σ LNI 2 / σ LNI a 2 as a function of inner scale and path length for the optical system described in the text.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

l 0 = 7 . 4 ( ν 3 / ε ) 1 / 4 .
C V T 2 = ( 8 / 3 ) ε 2 / 3 .
ν = μ / ρ ,
μ = β T 3 / 2 T + S
ρ = M 0 P R T ,
l 0 = 10 . 7 ( β R M 0 ) 3 / 4 T 15 / 8 [ ( T + S ) P ] 3 / 4 ( C V T 2 ) 3 / 8

Metrics