Abstract

The radiance and degree of linear polarization of the upward radiation emerging from the top of the terrestrial atmosphere bounded by a ruffled ocean surface are computed in the wavelength region ranging from 0.40 to 0.80 μm, with the aid of the adding method. The ruffled ocean surface is treated as an interacting interface, where the radiation transmitted diffusely from below the ocean surface into the atmosphere is also taken into account. Computational results show that the simultaneous measurement of radiance and polarization degree from space makes it possible to derive atmospheric and oceanic parameters.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Raschke, “Multiple Scattering Calculation of the Transfer of Solar Radiation in an Atmosphere-Ocean System,” Beitr. Phys. Atmos. 45, 1 (1972).
  2. G. N. Plass, G. W. Kattawar, J. A. Guinn, “Radiance Distribution over a Ruffled Sea: Contributions from Glitter, Sky, and Ocean,” Appl. Opt. 15, 3161 (1976).
    [CrossRef] [PubMed]
  3. M. Tanaka, T. Nakajima, “Effects of Oceanic Turbidity and Index of Refraction of Hydrosols on the Flux of Solar Radiation in the Atmospheric-Ocean System,” J. Quant. Spectrosc. Radiat. Transfer 18, 93 (1977).
    [CrossRef]
  4. T. Nakajima, M. Tanaka, “Effect of Wind-Generated Waves on the Transfer of Solar Radiation in the Atmosphere-Ocean System,” J. Quant. Spectrosc. Radiat. Transfer 29, 521 (1983).
    [CrossRef]
  5. T. Takashima, “A New Approach to Evaluation of the Atmospheric Effects on Upwelling Radiance from the Ocean,” Pap. Meteorol. Geophys. 34, 75 (1983).
    [CrossRef]
  6. J. Fischer, H. Grassl, “Radiative Transfer in an Atmosphere–Ocean System: an Azimuthally Dependent Matrix-Operator Approach,” Appl. Opt. 23, 1032 (1984).
    [CrossRef] [PubMed]
  7. G. W. Kattawar, G. N. Plass, J. A. Guinn, “Monte Carlo Calculations of the Polarization of Radiation in the Earth’s Atmosphere-Ocean System,” J. Phys. Oceanogr. 3, 353 (1973).
    [CrossRef]
  8. Z. Ahmad, R. S. Fraser, “An Iterative Radiative Transfer Code for Ocean-Atmosphere Systems,” J. Atmos. Sci. 39, 656 (1982).
    [CrossRef]
  9. T. Takashima, “Polarization Effect on Radiative Transfer in Planetary Composite Atmospheres with Interacting Interface,” Earth, Moon and Planets32, (to appear) (1985).
  10. J. E. A. Selby, R. M. McClatchey, “Atmospheric Transmittance from 0.25 to 28.5 μm: Computer Code LOWTRAN 2,” Air Force Cambridge Research Laboratory, AFCRL-72-0745 (1972).
  11. G. M. Hale, M. R. Querry, “Optical Constants of Water in the 200-nm to 200-μm Wavelength Region,” Appl. Opt. 12, 555 (1973).
    [CrossRef] [PubMed]
  12. F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” Air Force Geophysics Laboratory, AFGL-TR-80-0067 (1980).
  13. C. Cox, W. Munk, “Some Problems in Optical Oceanography,” J. Mar. Res. 14, 63 (1955).
  14. A. Morel, “Optical Properties of Pure Water and Pure Sea Water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, Eds. (Academic, London, 1974), Chap. 1.
  15. H. Quenzel, M. Kaestner, “Optical Properties of the Atmosphere: Calculated Variability and Application to Satellite Remote Sensing of Phytoplankton,” Appl. Opt. 19, 1338 (1980).
    [CrossRef] [PubMed]

1984 (1)

1983 (2)

T. Nakajima, M. Tanaka, “Effect of Wind-Generated Waves on the Transfer of Solar Radiation in the Atmosphere-Ocean System,” J. Quant. Spectrosc. Radiat. Transfer 29, 521 (1983).
[CrossRef]

T. Takashima, “A New Approach to Evaluation of the Atmospheric Effects on Upwelling Radiance from the Ocean,” Pap. Meteorol. Geophys. 34, 75 (1983).
[CrossRef]

1982 (1)

Z. Ahmad, R. S. Fraser, “An Iterative Radiative Transfer Code for Ocean-Atmosphere Systems,” J. Atmos. Sci. 39, 656 (1982).
[CrossRef]

1980 (1)

1977 (1)

M. Tanaka, T. Nakajima, “Effects of Oceanic Turbidity and Index of Refraction of Hydrosols on the Flux of Solar Radiation in the Atmospheric-Ocean System,” J. Quant. Spectrosc. Radiat. Transfer 18, 93 (1977).
[CrossRef]

1976 (1)

1973 (2)

G. M. Hale, M. R. Querry, “Optical Constants of Water in the 200-nm to 200-μm Wavelength Region,” Appl. Opt. 12, 555 (1973).
[CrossRef] [PubMed]

G. W. Kattawar, G. N. Plass, J. A. Guinn, “Monte Carlo Calculations of the Polarization of Radiation in the Earth’s Atmosphere-Ocean System,” J. Phys. Oceanogr. 3, 353 (1973).
[CrossRef]

1972 (1)

E. Raschke, “Multiple Scattering Calculation of the Transfer of Solar Radiation in an Atmosphere-Ocean System,” Beitr. Phys. Atmos. 45, 1 (1972).

1955 (1)

C. Cox, W. Munk, “Some Problems in Optical Oceanography,” J. Mar. Res. 14, 63 (1955).

Ahmad, Z.

Z. Ahmad, R. S. Fraser, “An Iterative Radiative Transfer Code for Ocean-Atmosphere Systems,” J. Atmos. Sci. 39, 656 (1982).
[CrossRef]

Cox, C.

C. Cox, W. Munk, “Some Problems in Optical Oceanography,” J. Mar. Res. 14, 63 (1955).

Fischer, J.

Fraser, R. S.

Z. Ahmad, R. S. Fraser, “An Iterative Radiative Transfer Code for Ocean-Atmosphere Systems,” J. Atmos. Sci. 39, 656 (1982).
[CrossRef]

Grassl, H.

Guinn, J. A.

G. N. Plass, G. W. Kattawar, J. A. Guinn, “Radiance Distribution over a Ruffled Sea: Contributions from Glitter, Sky, and Ocean,” Appl. Opt. 15, 3161 (1976).
[CrossRef] [PubMed]

G. W. Kattawar, G. N. Plass, J. A. Guinn, “Monte Carlo Calculations of the Polarization of Radiation in the Earth’s Atmosphere-Ocean System,” J. Phys. Oceanogr. 3, 353 (1973).
[CrossRef]

Hale, G. M.

Kaestner, M.

Kattawar, G. W.

G. N. Plass, G. W. Kattawar, J. A. Guinn, “Radiance Distribution over a Ruffled Sea: Contributions from Glitter, Sky, and Ocean,” Appl. Opt. 15, 3161 (1976).
[CrossRef] [PubMed]

G. W. Kattawar, G. N. Plass, J. A. Guinn, “Monte Carlo Calculations of the Polarization of Radiation in the Earth’s Atmosphere-Ocean System,” J. Phys. Oceanogr. 3, 353 (1973).
[CrossRef]

Kneizys, F. X.

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” Air Force Geophysics Laboratory, AFGL-TR-80-0067 (1980).

McClatchey, R. M.

J. E. A. Selby, R. M. McClatchey, “Atmospheric Transmittance from 0.25 to 28.5 μm: Computer Code LOWTRAN 2,” Air Force Cambridge Research Laboratory, AFCRL-72-0745 (1972).

Morel, A.

A. Morel, “Optical Properties of Pure Water and Pure Sea Water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, Eds. (Academic, London, 1974), Chap. 1.

Munk, W.

C. Cox, W. Munk, “Some Problems in Optical Oceanography,” J. Mar. Res. 14, 63 (1955).

Nakajima, T.

T. Nakajima, M. Tanaka, “Effect of Wind-Generated Waves on the Transfer of Solar Radiation in the Atmosphere-Ocean System,” J. Quant. Spectrosc. Radiat. Transfer 29, 521 (1983).
[CrossRef]

M. Tanaka, T. Nakajima, “Effects of Oceanic Turbidity and Index of Refraction of Hydrosols on the Flux of Solar Radiation in the Atmospheric-Ocean System,” J. Quant. Spectrosc. Radiat. Transfer 18, 93 (1977).
[CrossRef]

Plass, G. N.

G. N. Plass, G. W. Kattawar, J. A. Guinn, “Radiance Distribution over a Ruffled Sea: Contributions from Glitter, Sky, and Ocean,” Appl. Opt. 15, 3161 (1976).
[CrossRef] [PubMed]

G. W. Kattawar, G. N. Plass, J. A. Guinn, “Monte Carlo Calculations of the Polarization of Radiation in the Earth’s Atmosphere-Ocean System,” J. Phys. Oceanogr. 3, 353 (1973).
[CrossRef]

Quenzel, H.

Querry, M. R.

Raschke, E.

E. Raschke, “Multiple Scattering Calculation of the Transfer of Solar Radiation in an Atmosphere-Ocean System,” Beitr. Phys. Atmos. 45, 1 (1972).

Selby, J. E. A.

J. E. A. Selby, R. M. McClatchey, “Atmospheric Transmittance from 0.25 to 28.5 μm: Computer Code LOWTRAN 2,” Air Force Cambridge Research Laboratory, AFCRL-72-0745 (1972).

Takashima, T.

T. Takashima, “A New Approach to Evaluation of the Atmospheric Effects on Upwelling Radiance from the Ocean,” Pap. Meteorol. Geophys. 34, 75 (1983).
[CrossRef]

T. Takashima, “Polarization Effect on Radiative Transfer in Planetary Composite Atmospheres with Interacting Interface,” Earth, Moon and Planets32, (to appear) (1985).

Tanaka, M.

T. Nakajima, M. Tanaka, “Effect of Wind-Generated Waves on the Transfer of Solar Radiation in the Atmosphere-Ocean System,” J. Quant. Spectrosc. Radiat. Transfer 29, 521 (1983).
[CrossRef]

M. Tanaka, T. Nakajima, “Effects of Oceanic Turbidity and Index of Refraction of Hydrosols on the Flux of Solar Radiation in the Atmospheric-Ocean System,” J. Quant. Spectrosc. Radiat. Transfer 18, 93 (1977).
[CrossRef]

Appl. Opt. (4)

Beitr. Phys. Atmos. (1)

E. Raschke, “Multiple Scattering Calculation of the Transfer of Solar Radiation in an Atmosphere-Ocean System,” Beitr. Phys. Atmos. 45, 1 (1972).

J. Atmos. Sci. (1)

Z. Ahmad, R. S. Fraser, “An Iterative Radiative Transfer Code for Ocean-Atmosphere Systems,” J. Atmos. Sci. 39, 656 (1982).
[CrossRef]

J. Mar. Res. (1)

C. Cox, W. Munk, “Some Problems in Optical Oceanography,” J. Mar. Res. 14, 63 (1955).

J. Phys. Oceanogr. (1)

G. W. Kattawar, G. N. Plass, J. A. Guinn, “Monte Carlo Calculations of the Polarization of Radiation in the Earth’s Atmosphere-Ocean System,” J. Phys. Oceanogr. 3, 353 (1973).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

M. Tanaka, T. Nakajima, “Effects of Oceanic Turbidity and Index of Refraction of Hydrosols on the Flux of Solar Radiation in the Atmospheric-Ocean System,” J. Quant. Spectrosc. Radiat. Transfer 18, 93 (1977).
[CrossRef]

T. Nakajima, M. Tanaka, “Effect of Wind-Generated Waves on the Transfer of Solar Radiation in the Atmosphere-Ocean System,” J. Quant. Spectrosc. Radiat. Transfer 29, 521 (1983).
[CrossRef]

Pap. Meteorol. Geophys. (1)

T. Takashima, “A New Approach to Evaluation of the Atmospheric Effects on Upwelling Radiance from the Ocean,” Pap. Meteorol. Geophys. 34, 75 (1983).
[CrossRef]

Other (4)

T. Takashima, “Polarization Effect on Radiative Transfer in Planetary Composite Atmospheres with Interacting Interface,” Earth, Moon and Planets32, (to appear) (1985).

J. E. A. Selby, R. M. McClatchey, “Atmospheric Transmittance from 0.25 to 28.5 μm: Computer Code LOWTRAN 2,” Air Force Cambridge Research Laboratory, AFCRL-72-0745 (1972).

A. Morel, “Optical Properties of Pure Water and Pure Sea Water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, Eds. (Academic, London, 1974), Chap. 1.

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 5,” Air Force Geophysics Laboratory, AFGL-TR-80-0067 (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Radiance and degree of polarization of the upwelling radiation from the atmosphere–ocean system in the principal plane at 0.45 μm. The atmosphere is in clear (fine lines) and hazy (heavy lines) conditions with a surface wind (υ) of 2 m/sec (○) and 8 m/sec(+); ocean conditions are clear with the hydrosol’s refractive index (mh) of 1.16. The incident flux at the top is normalized to 1.

Fig. 2
Fig. 2

Same as Fig. 1 but for changed oceanic conditions, here the atmosphere is clear with υ = 5 m/sec. The ocean is turbid with hydrosols of mh = 1.16 (Δ) and with those of mh = 1.07–0.01i (+). The atmosphere bounded by the ocean surface is also shown (○), where no radiation is transmitted from below the ocean into the atmosphere.

Fig. 3
Fig. 3

Maximum degree of polarization ( P max 90 ) and radiance of the corresponding direction ( I max 90 ) of the upwelling radiation from the atmosphere–ocean system for θ0 = 66.46° in the wavelength region ranging from 0.40 to 0.80 μm. In (a), P max 90 did not appear at λ = 0.70 and 0.80 μm in the clear atmosphere–turbid ocean. Therefore degrees of polarization were shown in the corresponding direction of P max 90 at 0.75 μm.

Fig. 4
Fig. 4

(a) and (b) Same as Figs. 3(a) and (b), respectively, except that the surface wind changes from 2 to 8 m/sec in the clear ocean (mh = 1.16) for θ0 = 38.23°. (c) and (d) show the same as Figs. 3(a) and (b), respectively, but for θ0 = 38.23°.

Fig. 5
Fig. 5

Position of neutral point in the atmosphere bounded by the ocean surface in the region ranging from 0.40 to 0.80 μm. The case of the atmosphere only is also shown (dashed lines): (a) θ0 = 66.46°; (b) 38.23°; and (c) 6.28°.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = { C s r 4 for 0 . 1 μ m r 22 μ m , 0 for r 0 . 1 μ m or r 22 μ m

Metrics