Abstract

Three instruments for measuring absorption of visible light by atmospheric aerosols are compared: the visual comparator; plate diffuser; and photoacoustic spectrometer. Two versions of the photoacoustic spectrometer are tested, one built of acrylic plastic and the other of aluminum. One version of the visual comparator uses Millipore filters for a crucial reflective surface, another a mirror. Several materials collected on Nuclepore filters are used in the comparison. Laboratory generated samples consist of carbon and carbon overlaid with ammonium sulfate. Atmospheric aerosols were collected in Tucson and on an Arizona mountain peak. All methods give reasonably consistent results, even when applied to the lightly absorbing nonurban atmospheric samples.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hansen, A. A. Lacis, P. Lee, W. C. Wang, “Climatic Effects of Atmospheric Aerosols,” Ann. NY Acad. Sci. 338, 575 (1980).
    [CrossRef]
  2. C.-I. Lin, M. Baker, R. J. Charlson, “Absorption Coefficient of Atmospheric Aerosol: a Method for Measurement,” Appl. Opt. 12, 1356 (1973).
    [CrossRef] [PubMed]
  3. A. D. Clarke, “Effects of Filter Internal Reflection Coefficient on Light Absorption Measurements Made Using the Integrating Plate Method,” Appl. Opt. 21, 3021 (1982).
    [CrossRef] [PubMed]
  4. H. Rosen, T. Novakov, “Optical Transmission Through Aerosol Deposits on Diffusely Reflective Filters: a Method for Measuring the Absorbing Component of Aerosol Particles.”
  5. J. S. Foot, “Spectrophone Measurements of the Absorption of Solar Radiation by Aerosol,” Q. J. R. Meteorol. Soc. 105, 275 (1979).
    [CrossRef]
  6. Z. Yasa, N. M. Amer, H. Rosen, A. D. A. Hansen, T. Novakov, “Photoacoustic Investigation of Urban Aerosol Particles,” Appl. Opt. 18, 2528 (1979).
    [CrossRef] [PubMed]
  7. C. A. Bennett, R. R. Patty, “Monitoring Particulate Carbon Collected on Teflon Filters: an Evaluation of Photoacoustic and Transmission Techniques,” Appl. Opt. 21, 371 (1982).
    [CrossRef] [PubMed]
  8. S. Twomey, “Direct Visual Photometric Technique for Estimating Absorption in Collected Aerosol Samples,” Appl. Opt. 19, 1740 (1980).
    [CrossRef] [PubMed]
  9. S. Twomey, “Results from Aerosol Measurements at a Mountain Top in Arizona,” J. Rech. Atmos. 17, 97 (1983).
  10. N. C. Ahlquist, R. J. Charlson, “New Instrument for Evaluating Visual Quality of Air,” J. Air Pollut. Control Assoc. 17, 467 (1967).
    [CrossRef] [PubMed]
  11. M. Sadler, R. J. Charlson, H. Rosen, T. Novakov, “An Intercomparison of the Integrating Plate and the Laser Transmission Methods for Determination of Aerosol Absorption Coefficients,” Atmos. Environ. 15, 1265 (1981).
    [CrossRef]
  12. A. D. Clarke, “Integrating Sandwich: a New Method of Measurement of the Light Absorption Coefficient for Atmospheric Particles,” Appl. Opt. 21, 3011 (1982).
    [CrossRef] [PubMed]
  13. A. D. Clarke, R. J. Charlson, “Aerosol Light Absorption at MLO,” in Geophysical Monitoring for Climatic Change, No. 11, Summary Report 1982, J. M. Harris, B. A. Bodhaine, Eds. (Air Resources Laboratory, Boulder, Colo., 1983), p. 111.

1983 (1)

S. Twomey, “Results from Aerosol Measurements at a Mountain Top in Arizona,” J. Rech. Atmos. 17, 97 (1983).

1982 (3)

1981 (1)

M. Sadler, R. J. Charlson, H. Rosen, T. Novakov, “An Intercomparison of the Integrating Plate and the Laser Transmission Methods for Determination of Aerosol Absorption Coefficients,” Atmos. Environ. 15, 1265 (1981).
[CrossRef]

1980 (2)

S. Twomey, “Direct Visual Photometric Technique for Estimating Absorption in Collected Aerosol Samples,” Appl. Opt. 19, 1740 (1980).
[CrossRef] [PubMed]

J. Hansen, A. A. Lacis, P. Lee, W. C. Wang, “Climatic Effects of Atmospheric Aerosols,” Ann. NY Acad. Sci. 338, 575 (1980).
[CrossRef]

1979 (2)

J. S. Foot, “Spectrophone Measurements of the Absorption of Solar Radiation by Aerosol,” Q. J. R. Meteorol. Soc. 105, 275 (1979).
[CrossRef]

Z. Yasa, N. M. Amer, H. Rosen, A. D. A. Hansen, T. Novakov, “Photoacoustic Investigation of Urban Aerosol Particles,” Appl. Opt. 18, 2528 (1979).
[CrossRef] [PubMed]

1973 (1)

1967 (1)

N. C. Ahlquist, R. J. Charlson, “New Instrument for Evaluating Visual Quality of Air,” J. Air Pollut. Control Assoc. 17, 467 (1967).
[CrossRef] [PubMed]

Ahlquist, N. C.

N. C. Ahlquist, R. J. Charlson, “New Instrument for Evaluating Visual Quality of Air,” J. Air Pollut. Control Assoc. 17, 467 (1967).
[CrossRef] [PubMed]

Amer, N. M.

Baker, M.

Bennett, C. A.

Charlson, R. J.

M. Sadler, R. J. Charlson, H. Rosen, T. Novakov, “An Intercomparison of the Integrating Plate and the Laser Transmission Methods for Determination of Aerosol Absorption Coefficients,” Atmos. Environ. 15, 1265 (1981).
[CrossRef]

C.-I. Lin, M. Baker, R. J. Charlson, “Absorption Coefficient of Atmospheric Aerosol: a Method for Measurement,” Appl. Opt. 12, 1356 (1973).
[CrossRef] [PubMed]

N. C. Ahlquist, R. J. Charlson, “New Instrument for Evaluating Visual Quality of Air,” J. Air Pollut. Control Assoc. 17, 467 (1967).
[CrossRef] [PubMed]

A. D. Clarke, R. J. Charlson, “Aerosol Light Absorption at MLO,” in Geophysical Monitoring for Climatic Change, No. 11, Summary Report 1982, J. M. Harris, B. A. Bodhaine, Eds. (Air Resources Laboratory, Boulder, Colo., 1983), p. 111.

Clarke, A. D.

Foot, J. S.

J. S. Foot, “Spectrophone Measurements of the Absorption of Solar Radiation by Aerosol,” Q. J. R. Meteorol. Soc. 105, 275 (1979).
[CrossRef]

Hansen, A. D. A.

Hansen, J.

J. Hansen, A. A. Lacis, P. Lee, W. C. Wang, “Climatic Effects of Atmospheric Aerosols,” Ann. NY Acad. Sci. 338, 575 (1980).
[CrossRef]

Lacis, A. A.

J. Hansen, A. A. Lacis, P. Lee, W. C. Wang, “Climatic Effects of Atmospheric Aerosols,” Ann. NY Acad. Sci. 338, 575 (1980).
[CrossRef]

Lee, P.

J. Hansen, A. A. Lacis, P. Lee, W. C. Wang, “Climatic Effects of Atmospheric Aerosols,” Ann. NY Acad. Sci. 338, 575 (1980).
[CrossRef]

Lin, C.-I.

Novakov, T.

M. Sadler, R. J. Charlson, H. Rosen, T. Novakov, “An Intercomparison of the Integrating Plate and the Laser Transmission Methods for Determination of Aerosol Absorption Coefficients,” Atmos. Environ. 15, 1265 (1981).
[CrossRef]

Z. Yasa, N. M. Amer, H. Rosen, A. D. A. Hansen, T. Novakov, “Photoacoustic Investigation of Urban Aerosol Particles,” Appl. Opt. 18, 2528 (1979).
[CrossRef] [PubMed]

H. Rosen, T. Novakov, “Optical Transmission Through Aerosol Deposits on Diffusely Reflective Filters: a Method for Measuring the Absorbing Component of Aerosol Particles.”

Patty, R. R.

Rosen, H.

M. Sadler, R. J. Charlson, H. Rosen, T. Novakov, “An Intercomparison of the Integrating Plate and the Laser Transmission Methods for Determination of Aerosol Absorption Coefficients,” Atmos. Environ. 15, 1265 (1981).
[CrossRef]

Z. Yasa, N. M. Amer, H. Rosen, A. D. A. Hansen, T. Novakov, “Photoacoustic Investigation of Urban Aerosol Particles,” Appl. Opt. 18, 2528 (1979).
[CrossRef] [PubMed]

H. Rosen, T. Novakov, “Optical Transmission Through Aerosol Deposits on Diffusely Reflective Filters: a Method for Measuring the Absorbing Component of Aerosol Particles.”

Sadler, M.

M. Sadler, R. J. Charlson, H. Rosen, T. Novakov, “An Intercomparison of the Integrating Plate and the Laser Transmission Methods for Determination of Aerosol Absorption Coefficients,” Atmos. Environ. 15, 1265 (1981).
[CrossRef]

Twomey, S.

S. Twomey, “Results from Aerosol Measurements at a Mountain Top in Arizona,” J. Rech. Atmos. 17, 97 (1983).

S. Twomey, “Direct Visual Photometric Technique for Estimating Absorption in Collected Aerosol Samples,” Appl. Opt. 19, 1740 (1980).
[CrossRef] [PubMed]

Wang, W. C.

J. Hansen, A. A. Lacis, P. Lee, W. C. Wang, “Climatic Effects of Atmospheric Aerosols,” Ann. NY Acad. Sci. 338, 575 (1980).
[CrossRef]

Yasa, Z.

Ann. NY Acad. Sci. (1)

J. Hansen, A. A. Lacis, P. Lee, W. C. Wang, “Climatic Effects of Atmospheric Aerosols,” Ann. NY Acad. Sci. 338, 575 (1980).
[CrossRef]

Appl. Opt. (6)

Atmos. Environ. (1)

M. Sadler, R. J. Charlson, H. Rosen, T. Novakov, “An Intercomparison of the Integrating Plate and the Laser Transmission Methods for Determination of Aerosol Absorption Coefficients,” Atmos. Environ. 15, 1265 (1981).
[CrossRef]

J. Air Pollut. Control Assoc. (1)

N. C. Ahlquist, R. J. Charlson, “New Instrument for Evaluating Visual Quality of Air,” J. Air Pollut. Control Assoc. 17, 467 (1967).
[CrossRef] [PubMed]

J. Rech. Atmos. (1)

S. Twomey, “Results from Aerosol Measurements at a Mountain Top in Arizona,” J. Rech. Atmos. 17, 97 (1983).

Q. J. R. Meteorol. Soc. (1)

J. S. Foot, “Spectrophone Measurements of the Absorption of Solar Radiation by Aerosol,” Q. J. R. Meteorol. Soc. 105, 275 (1979).
[CrossRef]

Other (2)

H. Rosen, T. Novakov, “Optical Transmission Through Aerosol Deposits on Diffusely Reflective Filters: a Method for Measuring the Absorbing Component of Aerosol Particles.”

A. D. Clarke, R. J. Charlson, “Aerosol Light Absorption at MLO,” in Geophysical Monitoring for Climatic Change, No. 11, Summary Report 1982, J. M. Harris, B. A. Bodhaine, Eds. (Air Resources Laboratory, Boulder, Colo., 1983), p. 111.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Carbon sample absorption vs sample attenuation. Several instruments are compared.

Fig. 2
Fig. 2

Absorption by same carbon samples shown in Fig. 1, after addition of nonabsorbing ammonium sulfate particles, plotted vs attenuation by carbon samples.

Fig. 3
Fig. 3

Absorption, averaged over all methods, by carbon and carbon + ammonium sulfate samples, plotted vs attenuation by carbon samples.

Fig. 4
Fig. 4

Linear relationships between different methods, calculated for atmospheric aerosol data. On the abscissa is photoacoustic absorption, on the ordinate are visual comparator and plate diffuser absorptions. Correlation coefficients are 0.98, 0.91, and 0.84, for diffuser (—), comparator with Millipores (---), and comparator with mirror (-·-), respectively. Points to the left of dashed line are Mt. Lemmon data, others are Tucson data.

Metrics