Abstract

A novel technique is developed to detect any principal axis misalignment of polarization preserving fiber. The technique is based on measurement of reflect–returned power for the fiber oputput endface that is depolarized by the birefringence of the fiber. It is confirmed theoretically and experimentally that principal axis alignments of 0 and 45° can be successfully made only by minimizing and maximizing the monitoring level, respectively. On the basis of the alignment method, a fusion splicing technique is proposed for polarization preserving fibers. It is confirmed theoretically and experimentally that all principal axes alignment, core axis alignment, and splices loss estimations can be simply and sequentially attained with the present technique. Using the technique, ±0.5° angular alignment resolution and ±0.05-dB splice loss estimation accuracy are satisfactorily achieved.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Sasaki, N. Shibata, J. Noda, “Splicing of Single-Polarization Fibers by Optical Short-Pulse Method,” Electron Lett. 18, 997 (1982).
    [CrossRef]
  2. J. Noda, N. Shibata, T. Edahiro, Y. Sasaki, “Splicing of Single Polarization-Maintaining Fibers,” IEEE/OSA J. Lightwave Technol. LT-1, 61 (1983).
    [CrossRef]
  3. H. Tokiwa, K. Mochizuki, H. Wakabayashi, “Joint Characteristics Between Polarization-Maintaining Single-Mode Fibers,” Electron. Lett. 19, 485 (1983).
    [CrossRef]
  4. J. Sakai, S. Machida, T. Kimura, “Degree of Polarization in Anisotropic Single-Mode Optical Fibers: Theory,” IEEE J. Quantum Electron. QE-18, 488 (1982).
    [CrossRef]
  5. K. Bohm, K. Peterman, E. Weidel, “Performance of Lyot Depolarizers with Birefringent Single-Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-1, 71 (1983).
    [CrossRef]
  6. W. K. Burns, “Degree of Polarization in the Lyot Depolarizer,” IEEE/OSA J. Lightware Technol. LT-1, 475 (1983).
    [CrossRef]
  7. Y. Kato, T. Tanifuji, N. Kashima, R. Arioka, “Arc-Fusion Splicing of Single-Mode Fibers. 3: A Highly Efficient Splicing Technique,” Appl. Oct. 23, 2654 (1984).
    [CrossRef]
  8. Y. Kato, S. Seikai, M. Tateda, “Arc-Fusion Splicing of Single-Mode Fibers. 1: Optimum Splice Conditions,” Appl. Opt. 21, 1332 (1982).
    [CrossRef] [PubMed]

1984 (1)

Y. Kato, T. Tanifuji, N. Kashima, R. Arioka, “Arc-Fusion Splicing of Single-Mode Fibers. 3: A Highly Efficient Splicing Technique,” Appl. Oct. 23, 2654 (1984).
[CrossRef]

1983 (4)

J. Noda, N. Shibata, T. Edahiro, Y. Sasaki, “Splicing of Single Polarization-Maintaining Fibers,” IEEE/OSA J. Lightwave Technol. LT-1, 61 (1983).
[CrossRef]

H. Tokiwa, K. Mochizuki, H. Wakabayashi, “Joint Characteristics Between Polarization-Maintaining Single-Mode Fibers,” Electron. Lett. 19, 485 (1983).
[CrossRef]

K. Bohm, K. Peterman, E. Weidel, “Performance of Lyot Depolarizers with Birefringent Single-Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-1, 71 (1983).
[CrossRef]

W. K. Burns, “Degree of Polarization in the Lyot Depolarizer,” IEEE/OSA J. Lightware Technol. LT-1, 475 (1983).
[CrossRef]

1982 (3)

J. Sakai, S. Machida, T. Kimura, “Degree of Polarization in Anisotropic Single-Mode Optical Fibers: Theory,” IEEE J. Quantum Electron. QE-18, 488 (1982).
[CrossRef]

Y. Kato, S. Seikai, M. Tateda, “Arc-Fusion Splicing of Single-Mode Fibers. 1: Optimum Splice Conditions,” Appl. Opt. 21, 1332 (1982).
[CrossRef] [PubMed]

Y. Sasaki, N. Shibata, J. Noda, “Splicing of Single-Polarization Fibers by Optical Short-Pulse Method,” Electron Lett. 18, 997 (1982).
[CrossRef]

Arioka, R.

Y. Kato, T. Tanifuji, N. Kashima, R. Arioka, “Arc-Fusion Splicing of Single-Mode Fibers. 3: A Highly Efficient Splicing Technique,” Appl. Oct. 23, 2654 (1984).
[CrossRef]

Bohm, K.

K. Bohm, K. Peterman, E. Weidel, “Performance of Lyot Depolarizers with Birefringent Single-Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-1, 71 (1983).
[CrossRef]

Burns, W. K.

W. K. Burns, “Degree of Polarization in the Lyot Depolarizer,” IEEE/OSA J. Lightware Technol. LT-1, 475 (1983).
[CrossRef]

Edahiro, T.

J. Noda, N. Shibata, T. Edahiro, Y. Sasaki, “Splicing of Single Polarization-Maintaining Fibers,” IEEE/OSA J. Lightwave Technol. LT-1, 61 (1983).
[CrossRef]

Kashima, N.

Y. Kato, T. Tanifuji, N. Kashima, R. Arioka, “Arc-Fusion Splicing of Single-Mode Fibers. 3: A Highly Efficient Splicing Technique,” Appl. Oct. 23, 2654 (1984).
[CrossRef]

Kato, Y.

Y. Kato, T. Tanifuji, N. Kashima, R. Arioka, “Arc-Fusion Splicing of Single-Mode Fibers. 3: A Highly Efficient Splicing Technique,” Appl. Oct. 23, 2654 (1984).
[CrossRef]

Y. Kato, S. Seikai, M. Tateda, “Arc-Fusion Splicing of Single-Mode Fibers. 1: Optimum Splice Conditions,” Appl. Opt. 21, 1332 (1982).
[CrossRef] [PubMed]

Kimura, T.

J. Sakai, S. Machida, T. Kimura, “Degree of Polarization in Anisotropic Single-Mode Optical Fibers: Theory,” IEEE J. Quantum Electron. QE-18, 488 (1982).
[CrossRef]

Machida, S.

J. Sakai, S. Machida, T. Kimura, “Degree of Polarization in Anisotropic Single-Mode Optical Fibers: Theory,” IEEE J. Quantum Electron. QE-18, 488 (1982).
[CrossRef]

Mochizuki, K.

H. Tokiwa, K. Mochizuki, H. Wakabayashi, “Joint Characteristics Between Polarization-Maintaining Single-Mode Fibers,” Electron. Lett. 19, 485 (1983).
[CrossRef]

Noda, J.

J. Noda, N. Shibata, T. Edahiro, Y. Sasaki, “Splicing of Single Polarization-Maintaining Fibers,” IEEE/OSA J. Lightwave Technol. LT-1, 61 (1983).
[CrossRef]

Y. Sasaki, N. Shibata, J. Noda, “Splicing of Single-Polarization Fibers by Optical Short-Pulse Method,” Electron Lett. 18, 997 (1982).
[CrossRef]

Peterman, K.

K. Bohm, K. Peterman, E. Weidel, “Performance of Lyot Depolarizers with Birefringent Single-Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-1, 71 (1983).
[CrossRef]

Sakai, J.

J. Sakai, S. Machida, T. Kimura, “Degree of Polarization in Anisotropic Single-Mode Optical Fibers: Theory,” IEEE J. Quantum Electron. QE-18, 488 (1982).
[CrossRef]

Sasaki, Y.

J. Noda, N. Shibata, T. Edahiro, Y. Sasaki, “Splicing of Single Polarization-Maintaining Fibers,” IEEE/OSA J. Lightwave Technol. LT-1, 61 (1983).
[CrossRef]

Y. Sasaki, N. Shibata, J. Noda, “Splicing of Single-Polarization Fibers by Optical Short-Pulse Method,” Electron Lett. 18, 997 (1982).
[CrossRef]

Seikai, S.

Shibata, N.

J. Noda, N. Shibata, T. Edahiro, Y. Sasaki, “Splicing of Single Polarization-Maintaining Fibers,” IEEE/OSA J. Lightwave Technol. LT-1, 61 (1983).
[CrossRef]

Y. Sasaki, N. Shibata, J. Noda, “Splicing of Single-Polarization Fibers by Optical Short-Pulse Method,” Electron Lett. 18, 997 (1982).
[CrossRef]

Tanifuji, T.

Y. Kato, T. Tanifuji, N. Kashima, R. Arioka, “Arc-Fusion Splicing of Single-Mode Fibers. 3: A Highly Efficient Splicing Technique,” Appl. Oct. 23, 2654 (1984).
[CrossRef]

Tateda, M.

Tokiwa, H.

H. Tokiwa, K. Mochizuki, H. Wakabayashi, “Joint Characteristics Between Polarization-Maintaining Single-Mode Fibers,” Electron. Lett. 19, 485 (1983).
[CrossRef]

Wakabayashi, H.

H. Tokiwa, K. Mochizuki, H. Wakabayashi, “Joint Characteristics Between Polarization-Maintaining Single-Mode Fibers,” Electron. Lett. 19, 485 (1983).
[CrossRef]

Weidel, E.

K. Bohm, K. Peterman, E. Weidel, “Performance of Lyot Depolarizers with Birefringent Single-Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-1, 71 (1983).
[CrossRef]

Appl. Oct. (1)

Y. Kato, T. Tanifuji, N. Kashima, R. Arioka, “Arc-Fusion Splicing of Single-Mode Fibers. 3: A Highly Efficient Splicing Technique,” Appl. Oct. 23, 2654 (1984).
[CrossRef]

Appl. Opt. (1)

Electron Lett. (1)

Y. Sasaki, N. Shibata, J. Noda, “Splicing of Single-Polarization Fibers by Optical Short-Pulse Method,” Electron Lett. 18, 997 (1982).
[CrossRef]

Electron. Lett. (1)

H. Tokiwa, K. Mochizuki, H. Wakabayashi, “Joint Characteristics Between Polarization-Maintaining Single-Mode Fibers,” Electron. Lett. 19, 485 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Sakai, S. Machida, T. Kimura, “Degree of Polarization in Anisotropic Single-Mode Optical Fibers: Theory,” IEEE J. Quantum Electron. QE-18, 488 (1982).
[CrossRef]

IEEE/OSA J. Lightware Technol. (1)

W. K. Burns, “Degree of Polarization in the Lyot Depolarizer,” IEEE/OSA J. Lightware Technol. LT-1, 475 (1983).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (2)

K. Bohm, K. Peterman, E. Weidel, “Performance of Lyot Depolarizers with Birefringent Single-Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-1, 71 (1983).
[CrossRef]

J. Noda, N. Shibata, T. Edahiro, Y. Sasaki, “Splicing of Single Polarization-Maintaining Fibers,” IEEE/OSA J. Lightwave Technol. LT-1, 61 (1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Block diagram of the conventional technique. (b) Diagram representing principles involved in the present technique: LS, light source; P i , output power of LS; e(t), electric field of P i ; P, polarizer; PP, polarization preserving fiber; A, analyzer; PD, photodetector; RP, Rochon prism; P ix ,P iy , incident light power; P rx ,P ry , returned power; P ox ,P oy , returned power through RP; y, polarized axis of RP; y1, principal axis of PP.

Fig. 2
Fig. 2

Dependence of monitoring level on angular misalignment.

Fig. 3
Fig. 3

Schematic configuration of setup for polarization preserving fiber splicing: PP1,PP2, polarization preserving fibers; MF, matching fluid; y1, y2, principal axes of PP1,PP2; θ1, angle between y and y1; θ2, angle between y1 and y2.

Fig. 4
Fig. 4

Experimental arrangement for polarization preserving fiber splicing: MD, modulator; L1-L3, lenses; HR, fiber holder and rotator; SM, splicing machine; PD, InGaAs-photodetector LA, lock-in amplifier.

Fig. 5
Fig. 5

Measured relation between monitoring level and angular misalignment.

Fig. 6
Fig. 6

Schematic view of fusion splice procedure based on present method.

Fig. 7
Fig. 7

Measured relation between splice loss α s and monitoring power change ΔP.

Tables (1)

Tables Icon

Table I Structural Parameters of Single-Polarization Fiber

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

e ( t ) = 2 0 ν ( w ) exp [ j ( w w 0 ) t ] d w ,
γ ( Z ) = 0 | ν ( w ) | 2 cos [ ( w w 0 ) Δ τ Z ] d w 0 | ν ( w ) | 2 d w ,
Δ τ = d ( β y β x ) d w .
ρ = exp [ ( Δ w Δ τ Z 2 ln 2 ) 2 ] ,
[ P i x P i y ] = [ C 1 C 2 ] P i ,
P i = e ( t ) e * ( t ) .
C 1 / C 2 10 4 .
[ P r x P r y ] = ζ { 1 + η ξ ( 1 ζ ) [ m 1 m 2 m 2 m 1 ] [ m 1 m 2 m 2 m 1 ] } [ P i x P i y ] ,
m 1 = cos 2 θ , m 2 = sin 2 θ , ζ = exp ( 2 a z ) .
[ P o x P o y ] = A [ C 2 C 1 C 1 C 2 ] [ P r x P r y ] ,
P o x = A ζ { 2 C 1 C 2 + η ξ ( 1 ζ ) [ 2 C 1 C 2 ( m 1 2 + m 2 2 ) + 2 ( C 1 2 + C 2 2 ) m 1 m 2 ] } P i .
A η ξ ζ ( 1 ζ ) sin 4 θ ( C 1 2 C 1 C 2 + C 2 2 ) P i = 0 .
P o x = A ζ { 2 C 1 C 2 + η ξ 1 ξ 2 ξ b ( 1 ζ ) [ 2 C 1 C 2 ( m 3 2 + m 4 2 ) + 2 ( C 1 2 + C 2 2 ) m 3 m 4 ] } P i
{ ξ 1 = exp ( 2 a 1 z 1 ) , ξ 2 = exp ( 2 a 2 z 2 ) , { m 3 = cos 2 θ 2 , m 4 = sin 2 θ 2 ,
P o x = P o o + B ξ b 2 ,
P o o = 2 A C 1 C 2 ζ , B = 2 A η ξ 1 ξ 2 ζ C 2 2 .
Δ P = 10 · log [ ( P o b P o o ) / ( P o s P o o ) ] dB .
α s = 10 · log ( ξ s ) = 1 2 · Δ P 10 · log ( ξ b ) = 1 2 Δ P + α b dB .
α s = 1 2 Δ P + 0 . 05 dB ,

Metrics