Abstract

A material sensor based on differential spectroscopic absorption is proposed. The presence of a foreign material in a medium embodying the fiber sensor results in power attenuation at some particular wavelengths. This attenuation, which may be used for measuring the amount of the lossy material, is theoretically analyzed for the case of single-mode operation. A sensitivity analysis is carried out, and some design considerations are discussed.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
    [CrossRef]
  2. J. P. Dakin, “Optical Fiber Sensors-Principles and Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 374, 000 (1983).
  3. K. Chan, H. Ito, H. Inaba, “An Optical-Fiber-Based Gas Sensor for Remote Absorption Measurement of Low-Level CH4 Gas in the Near-Infrared Region,” IEEE/OSA J. Lightwave Technol. LT-2, 234 (1984).
    [CrossRef]
  4. P. Cielo, K. Cole, M. Lamontange, C. K. Jen, “Fiber-Optic Evanescent Wave Spectroscopic Analysis”; National Research Council of Canada, private communication (unpublished).
  5. G. T. Black, R. A. Johnson, “Fiber-Optic Moisture Sensor for Composite Structures,” U.S. Patent4,221,962 (9Sept.1980).
  6. S. T. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic Press, New York, 1979), Chap. 3.
  7. A. Safaai-Jazi, G. L. Yip, “Scattering from an Arbitrarily Located Off-Axis Inhomogeneity in a Step-Index Optical Fiber,” IEEE Trans. Microwave Theory Tech. MTT-28, 24 (1980).
    [CrossRef]
  8. A. Safaai-Jazi, “A Study of Mode Classification and Scattering from an Off-Axis Inhomogeneity in Step-Index Optical Fibers,” Ph.D. Thesis, McGill U., Montreal (1978), Chap. 6.
  9. A. Safaai-Jazi, G. L. Yip, “Cutoff Conditions in Three Layer Cylindrical Dielectric Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-26, 898 (1978).
    [CrossRef]
  10. Ref. 5, p. 176.

1984 (1)

K. Chan, H. Ito, H. Inaba, “An Optical-Fiber-Based Gas Sensor for Remote Absorption Measurement of Low-Level CH4 Gas in the Near-Infrared Region,” IEEE/OSA J. Lightwave Technol. LT-2, 234 (1984).
[CrossRef]

1983 (1)

J. P. Dakin, “Optical Fiber Sensors-Principles and Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 374, 000 (1983).

1982 (1)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

1980 (1)

A. Safaai-Jazi, G. L. Yip, “Scattering from an Arbitrarily Located Off-Axis Inhomogeneity in a Step-Index Optical Fiber,” IEEE Trans. Microwave Theory Tech. MTT-28, 24 (1980).
[CrossRef]

1978 (1)

A. Safaai-Jazi, G. L. Yip, “Cutoff Conditions in Three Layer Cylindrical Dielectric Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-26, 898 (1978).
[CrossRef]

Black, G. T.

G. T. Black, R. A. Johnson, “Fiber-Optic Moisture Sensor for Composite Structures,” U.S. Patent4,221,962 (9Sept.1980).

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Chan, K.

K. Chan, H. Ito, H. Inaba, “An Optical-Fiber-Based Gas Sensor for Remote Absorption Measurement of Low-Level CH4 Gas in the Near-Infrared Region,” IEEE/OSA J. Lightwave Technol. LT-2, 234 (1984).
[CrossRef]

Chynoweth, A. G.

S. T. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic Press, New York, 1979), Chap. 3.

Cielo, P.

P. Cielo, K. Cole, M. Lamontange, C. K. Jen, “Fiber-Optic Evanescent Wave Spectroscopic Analysis”; National Research Council of Canada, private communication (unpublished).

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Cole, K.

P. Cielo, K. Cole, M. Lamontange, C. K. Jen, “Fiber-Optic Evanescent Wave Spectroscopic Analysis”; National Research Council of Canada, private communication (unpublished).

Dakin, J. P.

J. P. Dakin, “Optical Fiber Sensors-Principles and Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 374, 000 (1983).

Dandridge, A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Inaba, H.

K. Chan, H. Ito, H. Inaba, “An Optical-Fiber-Based Gas Sensor for Remote Absorption Measurement of Low-Level CH4 Gas in the Near-Infrared Region,” IEEE/OSA J. Lightwave Technol. LT-2, 234 (1984).
[CrossRef]

Ito, H.

K. Chan, H. Ito, H. Inaba, “An Optical-Fiber-Based Gas Sensor for Remote Absorption Measurement of Low-Level CH4 Gas in the Near-Infrared Region,” IEEE/OSA J. Lightwave Technol. LT-2, 234 (1984).
[CrossRef]

Jen, C. K.

P. Cielo, K. Cole, M. Lamontange, C. K. Jen, “Fiber-Optic Evanescent Wave Spectroscopic Analysis”; National Research Council of Canada, private communication (unpublished).

Johnson, R. A.

G. T. Black, R. A. Johnson, “Fiber-Optic Moisture Sensor for Composite Structures,” U.S. Patent4,221,962 (9Sept.1980).

Lamontange, M.

P. Cielo, K. Cole, M. Lamontange, C. K. Jen, “Fiber-Optic Evanescent Wave Spectroscopic Analysis”; National Research Council of Canada, private communication (unpublished).

Miller, S. T.

S. T. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic Press, New York, 1979), Chap. 3.

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Safaai-Jazi, A.

A. Safaai-Jazi, G. L. Yip, “Scattering from an Arbitrarily Located Off-Axis Inhomogeneity in a Step-Index Optical Fiber,” IEEE Trans. Microwave Theory Tech. MTT-28, 24 (1980).
[CrossRef]

A. Safaai-Jazi, G. L. Yip, “Cutoff Conditions in Three Layer Cylindrical Dielectric Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-26, 898 (1978).
[CrossRef]

A. Safaai-Jazi, “A Study of Mode Classification and Scattering from an Off-Axis Inhomogeneity in Step-Index Optical Fibers,” Ph.D. Thesis, McGill U., Montreal (1978), Chap. 6.

Sigel, G. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Yip, G. L.

A. Safaai-Jazi, G. L. Yip, “Scattering from an Arbitrarily Located Off-Axis Inhomogeneity in a Step-Index Optical Fiber,” IEEE Trans. Microwave Theory Tech. MTT-28, 24 (1980).
[CrossRef]

A. Safaai-Jazi, G. L. Yip, “Cutoff Conditions in Three Layer Cylindrical Dielectric Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-26, 898 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

A. Safaai-Jazi, G. L. Yip, “Scattering from an Arbitrarily Located Off-Axis Inhomogeneity in a Step-Index Optical Fiber,” IEEE Trans. Microwave Theory Tech. MTT-28, 24 (1980).
[CrossRef]

A. Safaai-Jazi, G. L. Yip, “Cutoff Conditions in Three Layer Cylindrical Dielectric Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-26, 898 (1978).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

K. Chan, H. Ito, H. Inaba, “An Optical-Fiber-Based Gas Sensor for Remote Absorption Measurement of Low-Level CH4 Gas in the Near-Infrared Region,” IEEE/OSA J. Lightwave Technol. LT-2, 234 (1984).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. P. Dakin, “Optical Fiber Sensors-Principles and Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 374, 000 (1983).

Other (5)

A. Safaai-Jazi, “A Study of Mode Classification and Scattering from an Off-Axis Inhomogeneity in Step-Index Optical Fibers,” Ph.D. Thesis, McGill U., Montreal (1978), Chap. 6.

P. Cielo, K. Cole, M. Lamontange, C. K. Jen, “Fiber-Optic Evanescent Wave Spectroscopic Analysis”; National Research Council of Canada, private communication (unpublished).

G. T. Black, R. A. Johnson, “Fiber-Optic Moisture Sensor for Composite Structures,” U.S. Patent4,221,962 (9Sept.1980).

S. T. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic Press, New York, 1979), Chap. 3.

Ref. 5, p. 176.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Transmission vs wavelength in a material with a narrow absorption band.

Fig. 2
Fig. 2

(a) Geometry of a three-layer dielectric waveguide. Refractive-index profile for (b) step-index fiber with lower cladding index, (c) step-index fiber with lower core index, (d) W-type fiber.

Fig. 3
Fig. 3

Variations of normalized power loss vs normalized frequency in lower cladding-index fibers.

Fig. 4
Fig. 4

Variations of normalized power loss vs normalized frequency in lower core-index fibers.

Fig. 5
Fig. 5

Variations of normalized power loss vs normalized frequency in W-type fibers.

Fig. 6
Fig. 6

Variations of normalized power loss vs normalized frequency V ˆ in lower cladding-index fibers with r2/r1 = 1.2.

Tables (1)

Tables Icon

Table I Refractive Indices of Optical Fibers

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

α = Δ P / 2 P ,
P ( 1 2 ) Re z = 0 plane ( E × H * ) · dS = ( 1 2 ) Re [ i = 1 3 r i 1 r i 0 2 π ( E i × H * i ) r d r d φ ] ,
Δ P = ( ε 0 / μ 0 ) 1 / 2 n 3 r α 3 r 2 0 2 π | E 3 | 2 r d r d φ ,
P ( λ 2 ) = P ( λ 1 ) · exp ( 2 α l ) ,
p = 10 log 10 [ P ( λ 2 ) / P ( λ 1 ) ] = 20 α l log 10 e = 8 . 686 α l dB .
α 3 = f ( x ) = f ( 0 ) + f ( 0 ) x + O ( x 2 ) .
α 3 ζ x ; ζ = constant .
S = | d p / d x | = 8 . 686 α ¯ l f ( x ) .
V = ( 2 π r 1 / λ 2 ) ( n 1 2 n 3 r 2 ) 1 / 2 = 2 . 3 , d = 2 r = 3 . 9  μ m .
δ = 0 . 2 r 1 = 0 . 4  μ m .
V ˆ = V [ ( n 1 2 n 2 2 ) / ( n 1 2 n 3 r 2 ) ] 1 / 2 = 2 . 3 × 0 . 57 = 1 . 32 .
p = p ¯ α 3 × 1 = 1500  x dB / m .
S = | d p / d x | = 1500 / m .
I = r 2 0 2 π | E 3 | 2 r d r d φ .
| E 3 | 2 = | E z 3 | 2 + | E r 3 | 2 + | E φ 3 | 2 .
E r 3 = ( j k 0 / k 3 2 ) [ β ¯ ( E z 3 / r ) + ( μ r 3 Z 0 / r ) ( H z 3 / φ ) ] ,
E φ 3 = ( j k 0 / k 3 2 ) [ ( β ¯ / r ) ( E z 3 / φ ) μ r 3 Z 0 ( H z 3 / r ) ] ,
E z 3 = a n K n ( k 3 r ) cos ( n φ ) exp [ j ( ω t + β z ) ] ,
H z 3 = b n K n ( k 3 r ) sin ( n φ ) exp [ j ( ω t + β z ) ] ,
I = ( π w 2 / 2 k 3 2 ) { | a n | 2 · f 1 [ K n ( w ) ] ( k 0 / k 3 2 ) [ | a n | 2 β ¯ 2 + | b n | 2 · ( μ r 3 Z 0 ) 2 f 2 [ K n ( w ) ] } ,
f 1 [ K n ( w ) ] = K n 2 ( w ) ( 1 + n 2 / w 2 ) K n 2 ( w ) , f 2 [ K n ( w ) ] = f 1 [ K n ( w ) ] + 2 K n ( w ) K n ( w ) / w ,

Metrics