Abstract

Remote displacement measurement is demonstrated using a Fabry-Perot cavity with a multimode optical fiber link. The sensing cavity modulates, as a function of its length, the spectrum of a light-emitting diode (LED). The light returns via the fiber and is analyzed by a tunable reference cavity. A closed-loop control causes the reference cavity to track the sensing cavity length within 2 × 10−12 m. Displacement range is 2 × 10−6 m. The reference cavity length is measured interferometrically, using a laser, to obtain the sensing cavity length. Advantages of this sensing technique include compatibility with multimode fiber-optic components, high immunity to optical losses, and large dynamic range.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
    [CrossRef]
  2. D. A. Jackson, A. Dandridge, S. K. Sheem, “Measurement of Small Phase Shifts Using a Single-Mode Optical-Fiber Interferometer,” Opt. Lett. 5, 139 (1980).
    [CrossRef] [PubMed]
  3. D. A. Jackson, R. Priest, A. Dandridge, A. B. Tveten, “Elimination of Drift in a Single-Mode Optical Fiber Interferometer Using a Piezoelectrically Stretched Coiled Fiber,” Appl. Opt. 19, 2926 (1980).
    [CrossRef] [PubMed]
  4. P. G. Cielo, “Fiber Optic Hydrophone: Improved Strain Configuration and Environmental Noise Protection,” Appl. Opt. 18, 2933 (1979).
    [CrossRef] [PubMed]
  5. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1959).
  6. J. L. Davis, S. Ezekiel, “Techniques for Shot-Noise-Limited Inertial Rotation Measurement Using a Multiturn Fiber Sagnac Interferometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131 (1978).
  7. J. L. Davis, S. Ezekiel, “Closed-Loop, Low-Noise, Fiber-Optic Rotation Sensor,” Opt. Lett. 6, 505 (1981).
    [CrossRef] [PubMed]
  8. B. Y. Kim, H. J. Shaw, “All Fiber-Optic Gyroscope with Linear Scale Factor Using Phase Detection,” Proc. Soc. Photo-Opt. Instrum. Eng. 478, 142 (1984).
  9. B. Y. Kim, H. J. Shaw, “Phase-Reading, All-Fiber-Optic Gyroscope,” Opt. Lett. 9, 378 (1984).
    [CrossRef] [PubMed]
  10. Y. Ohtsuka, “Dynamic Measurements of Small Displacements by Laser Interferometry,” Trans. Inst. Meas. Control London 4, 115 (1982).
    [CrossRef]

1984 (2)

B. Y. Kim, H. J. Shaw, “All Fiber-Optic Gyroscope with Linear Scale Factor Using Phase Detection,” Proc. Soc. Photo-Opt. Instrum. Eng. 478, 142 (1984).

B. Y. Kim, H. J. Shaw, “Phase-Reading, All-Fiber-Optic Gyroscope,” Opt. Lett. 9, 378 (1984).
[CrossRef] [PubMed]

1982 (2)

Y. Ohtsuka, “Dynamic Measurements of Small Displacements by Laser Interferometry,” Trans. Inst. Meas. Control London 4, 115 (1982).
[CrossRef]

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

1981 (1)

1980 (2)

1979 (1)

1978 (1)

J. L. Davis, S. Ezekiel, “Techniques for Shot-Noise-Limited Inertial Rotation Measurement Using a Multiturn Fiber Sagnac Interferometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131 (1978).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1959).

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Cielo, P. G.

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Dandridge, A.

Davis, J. L.

J. L. Davis, S. Ezekiel, “Closed-Loop, Low-Noise, Fiber-Optic Rotation Sensor,” Opt. Lett. 6, 505 (1981).
[CrossRef] [PubMed]

J. L. Davis, S. Ezekiel, “Techniques for Shot-Noise-Limited Inertial Rotation Measurement Using a Multiturn Fiber Sagnac Interferometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131 (1978).

Ezekiel, S.

J. L. Davis, S. Ezekiel, “Closed-Loop, Low-Noise, Fiber-Optic Rotation Sensor,” Opt. Lett. 6, 505 (1981).
[CrossRef] [PubMed]

J. L. Davis, S. Ezekiel, “Techniques for Shot-Noise-Limited Inertial Rotation Measurement Using a Multiturn Fiber Sagnac Interferometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131 (1978).

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Jackson, D. A.

Kim, B. Y.

B. Y. Kim, H. J. Shaw, “Phase-Reading, All-Fiber-Optic Gyroscope,” Opt. Lett. 9, 378 (1984).
[CrossRef] [PubMed]

B. Y. Kim, H. J. Shaw, “All Fiber-Optic Gyroscope with Linear Scale Factor Using Phase Detection,” Proc. Soc. Photo-Opt. Instrum. Eng. 478, 142 (1984).

Ohtsuka, Y.

Y. Ohtsuka, “Dynamic Measurements of Small Displacements by Laser Interferometry,” Trans. Inst. Meas. Control London 4, 115 (1982).
[CrossRef]

Priest, R.

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Shaw, H. J.

B. Y. Kim, H. J. Shaw, “All Fiber-Optic Gyroscope with Linear Scale Factor Using Phase Detection,” Proc. Soc. Photo-Opt. Instrum. Eng. 478, 142 (1984).

B. Y. Kim, H. J. Shaw, “Phase-Reading, All-Fiber-Optic Gyroscope,” Opt. Lett. 9, 378 (1984).
[CrossRef] [PubMed]

Sheem, S. K.

Sigel, G. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Tveten, A. B.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1959).

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Opt. Lett. (3)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

B. Y. Kim, H. J. Shaw, “All Fiber-Optic Gyroscope with Linear Scale Factor Using Phase Detection,” Proc. Soc. Photo-Opt. Instrum. Eng. 478, 142 (1984).

J. L. Davis, S. Ezekiel, “Techniques for Shot-Noise-Limited Inertial Rotation Measurement Using a Multiturn Fiber Sagnac Interferometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131 (1978).

Trans. Inst. Meas. Control London (1)

Y. Ohtsuka, “Dynamic Measurements of Small Displacements by Laser Interferometry,” Trans. Inst. Meas. Control London 4, 115 (1982).
[CrossRef]

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dual interferometer schematic.

Fig. 2
Fig. 2

Experiment using dual interferometers for remote displacement measurements.

Fig. 3
Fig. 3

Demodulated signal E vs voltage applied to sensing cavity PZT, VPZT. (Asterisk denotes point of zero relative phase difference.)

Fig. 4
Fig. 4

Electronic schematic. Upper: reference cavity control circuit. Lower: reference cavity measurement circuit.

Fig. 5
Fig. 5

Time variation of cavity length imbalance, lslr, for closed-loop operation.

Fig. 6
Fig. 6

Reference cavity path length measurement. Displacement measured using magnitude of fundamental (circles) or second harmonic (squares) vs digital phase-reading displacement measurement.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I f = 1 4 0 H s ( k ) H r ( k ) i i ( k ) d k .
H s ( k ) = 2 R 1 + R 2 1 R 1 + R m = 1 R m cos ( 2 m k l s ) ,
H r ( k ) = 1 2 + 1 2 cos ( 2 k l r + φ ) .
I f = 1 8 0 { 2 R 1 + R R 1 R 1 + R cos [ 2 k ( l s l r ) φ ] } i i ( k ) d k .
i i ( k ) = 1 π σ exp [ ( k k 0 σ ) 2 ] ,
I f = A 0 A 1 V ( l s l r ) cos [ 2 k 0 ( l s l r ) φ ] ,
A 0 = 1 4 R 1 + R ,
A 1 = 1 8 R 1 R 1 + R ,
V ( l s l r ) = exp { [ σ ( l s l r ) ] 2 } .
E = K V ( l s l r ) sin [ 2 k 0 ( l s l r ) φ ] .
E = K [ 2 k 0 ( l s l r ) φ ] .
E = K × 2 k 0 ε .

Metrics