Abstract

From a researcher’s as well as a user’s point of view, it is highly desirable to adopt a common basis for specifying optical time-domain reflectometer performance parameters. This paper proposes some procedures and test methods which permit these devices to be characterized in a consistent way. Passive test fixtures are also described which may facilitate measurements of dynamic range and other reflectometer properties.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Barnoski, S. M. Jensen, “Fiber Waveguides: A Novel Technique for Investigating Attenuation Characteristics,” Appl. Opt. 15, 2112 (1976).
    [CrossRef] [PubMed]
  2. S. D. Personick, “Photon Probe—An Optical Time-Domain Reflectometer,” Bell Syst. Tech. J. 56, 355 (1977).
  3. F. P. Kapron, P. D. Lazay, “Monomode Fiber Measurement Techniques and Standards,” Proc. Soc. Photo-Opt. Instrum. Eng. 425, 40 (1983).
  4. B. Costa, F. Esposto, C. D’Orio, P. Morra, “Splice Loss Evaluation by Means of the Backscattering Technique,” Electron. Lett. 15, 550 (1979).
    [CrossRef]
  5. P. Matthijsse, C. M. DeBlok, “Field Measurement of Splice Loss Applying the Backscattering Method,” Electron. Lett. 15, 795 (1979).
    [CrossRef]
  6. A. Le Boutet, “Analysis of Backscattering Results Applied to Cable Connection,” in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979).
  7. D. Rittich, “Low Loss Optical Couplers,” in Advances in Ceramics, Vol. 2 (American Ceramic Society, Columbus, Ohio, 1981), pp. 451–462.
  8. B. Costa, B. Sordo, U. Menaglia, L. Piccari, G. Grasso, “Attenuation Measurements Performed by Backscattering Technique,” Electron. Lett. 16, 352 (1980).
    [CrossRef]
  9. M. D. Rourke, “Measurement of the Insertion Loss of a Single Microbend,” Opt. Lett. 6, 440 (1981).
    [PubMed]
  10. M. Eriksrud, A. R. Mickelson, “Application of the Backscattering Technique to the Determination of Parameter Fluctuations in Multimode Optical Fibers,” IEEE J. Quantum Electron. QE-18, 1478 (1982).
    [CrossRef]
  11. B. L. Danielson, “Backscatter Measurements on Optical Fibers,” Natl. Bur. Stand. U.S. Tech. Note 1034 (1981).
  12. S. M. Jensen, “Observation of Differential Mode Attenuation in Graded-Index Fiber Waveguides Using OTDR,” in Technical Digest, Optical Fiber Communication, Washington, D.C. (1979).
  13. M. K. Barnoski, S. M. Jensen, M. D. Rourke, “OTDR Differential-Modal-Attenuation Measurements,” in Technical Digest, Fourth European Conference on Optical Communication, Genoa (1978).
  14. L. Stensland, G. Borak, “Raman Time-Domain Reflectometry,” in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981, paper WF1.
  15. M. Biet, J. P. Pochelle, “Backscattering Analysis of Optical Fibers in the Dual Mode Regime,” J. Opt. Commun. 4, 42 (1983).
  16. O. I. Szentesi, “Field Measurements of Optical Fiber Cable Systems,” in Technical Digest, Symposium on Optical Fiber Measurements, Boulder, Colo. (1980), pp. 37–42.
  17. J. Hecht, “Fiberoptic Test Equipment Survey,” Lasers Appl. 2, 63 (1983).
  18. E. Brinkmeyer, “Analysis of the Backscatter Method for Single-Mode Optical Fibers,” J. Opt. Soc. Am. 70, 1010 (1980).
    [CrossRef]
  19. E. G. Neumann, “Analysis of the Backscattering Method for Testing Optical Fiber Cables,” Electron. Commun. (AEU) 34, 157 (1980).
  20. For precise definitions of these quantities, see A. G. Hanson, Optical Waveguide Communications Glossary, Natl. Bur. Stand. U.S. Handbook 140 (1982).
  21. A. H. Hartog, M. P. Gold, “On the Theory of Backscattering in Single-Mode Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-2, 76 (1984).
    [CrossRef]
  22. J. L. Hullett, R. D. Jeffery, “Long-Range Optical Fiber Backscatter Loss Signatures Using Two-Point Processing,” Opt. Quantum Electron. 14, 41 (1982).
    [CrossRef]
  23. J. Kurki, J. Viljanen, “A High Performance Backscattering Set-Up Using Multimode Light Channels,” Opt. Quantum Electron. 15, 471 (1983).
    [CrossRef]
  24. B. Costa, B. Sordo, E. Vezzoni, “High Dynamic Range Backscattering Measurements,” in Advances in Ceramics, Vol. 2 (American Ceramic Society, Columbus, Ohio, 1981), pp. 273–277.
  25. K. Okada, “Backscattering Measurement,” in Annual Reviews in Electronics, Computers, and Telecommunications, Vol. 3 (Ohm Publishing, Tokyo, 1982), pp. 299–313.
  26. D. A. Philen, I. A. White, J. F. Kuhl, S. C. Mettler, “Single-Mode Fiber OTDR: Experiment and Theory,” IEEE J. Quantum Electron. QE-18, 1499 (1982).
    [CrossRef]
  27. A. H. Hartog, “Advances in Optical Time-Domain Reflectometry,” in Technical Digest, Symposium on Optical Fiber Measurements, Boulder, Colo. (1984), pp. 89–94.
  28. D. Marcuse, Principles of Optical Fiber Measurements (Academic, New York, 1981), Chap. 5.
  29. B. L. Danielson, “Backscatter Signature Simulations,” Natl. Bur. Stand. U.S. Tech Note 1050 (1981).
  30. Ref. 28, p. 240.
  31. M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, New York, 1962), p. 464.
  32. R. D. Jeffery, J. L. Hullett, “N-Point Processing of Optical Fiber Backscatter Signals,” Electron. Lett. 16, 822 (1982).
    [CrossRef]
  33. “Standard Optical Waveguide Fiber Material Classes and Preferred Sizes,” EIA Document RS-458A (1984).
  34. M. K. Barnoski, “Coupling Components for Optical Fiber Waveguides,” in Fundamentals of Optical Fiber Communications (Academic, New York, 1981), Chap. 3. In the case of bulk-optic directional couplers where the source is imaged onto the fiber end, the injected power may be independent of 2a for diffraction-limited laser sources and approximately proportional to 2a for semiconductor lasers with a stripe geometry emitting surface. However, Murata35 finds that coupled power in the latter case is largely independent of core diameter.
    [CrossRef]
  35. H. Murata, S. Inaco, Y. Matsuda, T. Kuroha, “Optimum Design for Optical Fiber Used in Optical Cable System,” in Technical Digest, Sixth European Conference on Optical Communications, York (1980).
  36. A. H. Cherin, E. D. Head, C. R. Lovelace, W. B. Gardner, “Selection of Mandrel Wrap Mode Filters for Optical Fiber Loss Measurements,” Fiber Int. Opt. 4, 49 (1982).
    [CrossRef]
  37. J. L. Hullett, R. D. Jeffery, “Long-Range Optical Fiber Backscatter Loss Signatures Using Two-Point Processing,” Opt. Quantum Electron. 14, 41 (1982).
    [CrossRef]
  38. M. Gold, “Design of a Long-Range Single-Mode OTDR,” IEEE/OSA J. Lightwave Technol. LT-3, 39 (1985).
    [CrossRef]
  39. M. Eriksrud, unpublished work.
  40. L. G. Cohen, “Shuttle Pulse Measurements of Pulse Spreading in an Optical Fiber,” Appl. Opt. 14, 1351 (1975).
    [CrossRef] [PubMed]
  41. D. Marcuse, “Steady-State Losses of Optical Fibers and Fiber Resonators,” Bell. Syst. Tech. J. 55, 1445 (1976).
  42. S. A. Newton, J. E. Bowers, H. J. Shaw, “Single-Mode Fiber Recirculating Delay Line,” Proc. Soc. Photo-Opt. Instrum. Eng. 326, 108 (1982).
  43. F. T. Stone, W. B. Gardner, C. R. Lovelace, “Calorimetric Measurement of Absorption and Scattering Losses in Optical Fibers,” Opt. Lett. 2, 48 (1978).
    [CrossRef] [PubMed]
  44. K. Inada, “A New Graphical Method Relating to Optical Fiber Attenuation,” Opt. Commun. 19, 437 (1976).
    [CrossRef]
  45. E. G. Neumann, “Optical Time-Domain Reflectometer: Comment,” Appl. Opt. 17, 1675 (1978).
    [CrossRef] [PubMed]
  46. M. P. Gold, A. H. Hartog, “Measurement of Backscatter Factor in Single-Mode Fibers,” Electron. Lett. 17, 965 (1981).
    [CrossRef]
  47. C. H. Hudson, “NBS Standard Reference Materials Catalog 1984–85,” Natl. Bur. Stand. U.S. Spec. Publ. 260 (1984).
  48. “The Role of Standard Reference Materials in Measurement Systems,” Natl. Bur. Stand. U.S. Monogr. 148 (1975).

1985 (1)

M. Gold, “Design of a Long-Range Single-Mode OTDR,” IEEE/OSA J. Lightwave Technol. LT-3, 39 (1985).
[CrossRef]

1984 (2)

A. H. Hartog, M. P. Gold, “On the Theory of Backscattering in Single-Mode Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-2, 76 (1984).
[CrossRef]

C. H. Hudson, “NBS Standard Reference Materials Catalog 1984–85,” Natl. Bur. Stand. U.S. Spec. Publ. 260 (1984).

1983 (4)

J. Kurki, J. Viljanen, “A High Performance Backscattering Set-Up Using Multimode Light Channels,” Opt. Quantum Electron. 15, 471 (1983).
[CrossRef]

F. P. Kapron, P. D. Lazay, “Monomode Fiber Measurement Techniques and Standards,” Proc. Soc. Photo-Opt. Instrum. Eng. 425, 40 (1983).

M. Biet, J. P. Pochelle, “Backscattering Analysis of Optical Fibers in the Dual Mode Regime,” J. Opt. Commun. 4, 42 (1983).

J. Hecht, “Fiberoptic Test Equipment Survey,” Lasers Appl. 2, 63 (1983).

1982 (7)

M. Eriksrud, A. R. Mickelson, “Application of the Backscattering Technique to the Determination of Parameter Fluctuations in Multimode Optical Fibers,” IEEE J. Quantum Electron. QE-18, 1478 (1982).
[CrossRef]

D. A. Philen, I. A. White, J. F. Kuhl, S. C. Mettler, “Single-Mode Fiber OTDR: Experiment and Theory,” IEEE J. Quantum Electron. QE-18, 1499 (1982).
[CrossRef]

J. L. Hullett, R. D. Jeffery, “Long-Range Optical Fiber Backscatter Loss Signatures Using Two-Point Processing,” Opt. Quantum Electron. 14, 41 (1982).
[CrossRef]

R. D. Jeffery, J. L. Hullett, “N-Point Processing of Optical Fiber Backscatter Signals,” Electron. Lett. 16, 822 (1982).
[CrossRef]

A. H. Cherin, E. D. Head, C. R. Lovelace, W. B. Gardner, “Selection of Mandrel Wrap Mode Filters for Optical Fiber Loss Measurements,” Fiber Int. Opt. 4, 49 (1982).
[CrossRef]

J. L. Hullett, R. D. Jeffery, “Long-Range Optical Fiber Backscatter Loss Signatures Using Two-Point Processing,” Opt. Quantum Electron. 14, 41 (1982).
[CrossRef]

S. A. Newton, J. E. Bowers, H. J. Shaw, “Single-Mode Fiber Recirculating Delay Line,” Proc. Soc. Photo-Opt. Instrum. Eng. 326, 108 (1982).

1981 (4)

M. P. Gold, A. H. Hartog, “Measurement of Backscatter Factor in Single-Mode Fibers,” Electron. Lett. 17, 965 (1981).
[CrossRef]

M. D. Rourke, “Measurement of the Insertion Loss of a Single Microbend,” Opt. Lett. 6, 440 (1981).
[PubMed]

B. L. Danielson, “Backscatter Signature Simulations,” Natl. Bur. Stand. U.S. Tech Note 1050 (1981).

B. L. Danielson, “Backscatter Measurements on Optical Fibers,” Natl. Bur. Stand. U.S. Tech. Note 1034 (1981).

1980 (3)

E. G. Neumann, “Analysis of the Backscattering Method for Testing Optical Fiber Cables,” Electron. Commun. (AEU) 34, 157 (1980).

B. Costa, B. Sordo, U. Menaglia, L. Piccari, G. Grasso, “Attenuation Measurements Performed by Backscattering Technique,” Electron. Lett. 16, 352 (1980).
[CrossRef]

E. Brinkmeyer, “Analysis of the Backscatter Method for Single-Mode Optical Fibers,” J. Opt. Soc. Am. 70, 1010 (1980).
[CrossRef]

1979 (2)

B. Costa, F. Esposto, C. D’Orio, P. Morra, “Splice Loss Evaluation by Means of the Backscattering Technique,” Electron. Lett. 15, 550 (1979).
[CrossRef]

P. Matthijsse, C. M. DeBlok, “Field Measurement of Splice Loss Applying the Backscattering Method,” Electron. Lett. 15, 795 (1979).
[CrossRef]

1978 (2)

1977 (1)

S. D. Personick, “Photon Probe—An Optical Time-Domain Reflectometer,” Bell Syst. Tech. J. 56, 355 (1977).

1976 (3)

D. Marcuse, “Steady-State Losses of Optical Fibers and Fiber Resonators,” Bell. Syst. Tech. J. 55, 1445 (1976).

K. Inada, “A New Graphical Method Relating to Optical Fiber Attenuation,” Opt. Commun. 19, 437 (1976).
[CrossRef]

M. K. Barnoski, S. M. Jensen, “Fiber Waveguides: A Novel Technique for Investigating Attenuation Characteristics,” Appl. Opt. 15, 2112 (1976).
[CrossRef] [PubMed]

1975 (2)

“The Role of Standard Reference Materials in Measurement Systems,” Natl. Bur. Stand. U.S. Monogr. 148 (1975).

L. G. Cohen, “Shuttle Pulse Measurements of Pulse Spreading in an Optical Fiber,” Appl. Opt. 14, 1351 (1975).
[CrossRef] [PubMed]

Barnoski, M. K.

M. K. Barnoski, S. M. Jensen, “Fiber Waveguides: A Novel Technique for Investigating Attenuation Characteristics,” Appl. Opt. 15, 2112 (1976).
[CrossRef] [PubMed]

M. K. Barnoski, “Coupling Components for Optical Fiber Waveguides,” in Fundamentals of Optical Fiber Communications (Academic, New York, 1981), Chap. 3. In the case of bulk-optic directional couplers where the source is imaged onto the fiber end, the injected power may be independent of 2a for diffraction-limited laser sources and approximately proportional to 2a for semiconductor lasers with a stripe geometry emitting surface. However, Murata35 finds that coupled power in the latter case is largely independent of core diameter.
[CrossRef]

M. K. Barnoski, S. M. Jensen, M. D. Rourke, “OTDR Differential-Modal-Attenuation Measurements,” in Technical Digest, Fourth European Conference on Optical Communication, Genoa (1978).

Biet, M.

M. Biet, J. P. Pochelle, “Backscattering Analysis of Optical Fibers in the Dual Mode Regime,” J. Opt. Commun. 4, 42 (1983).

Borak, G.

L. Stensland, G. Borak, “Raman Time-Domain Reflectometry,” in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981, paper WF1.

Bowers, J. E.

S. A. Newton, J. E. Bowers, H. J. Shaw, “Single-Mode Fiber Recirculating Delay Line,” Proc. Soc. Photo-Opt. Instrum. Eng. 326, 108 (1982).

Brinkmeyer, E.

Cherin, A. H.

A. H. Cherin, E. D. Head, C. R. Lovelace, W. B. Gardner, “Selection of Mandrel Wrap Mode Filters for Optical Fiber Loss Measurements,” Fiber Int. Opt. 4, 49 (1982).
[CrossRef]

Cohen, L. G.

Costa, B.

B. Costa, B. Sordo, U. Menaglia, L. Piccari, G. Grasso, “Attenuation Measurements Performed by Backscattering Technique,” Electron. Lett. 16, 352 (1980).
[CrossRef]

B. Costa, F. Esposto, C. D’Orio, P. Morra, “Splice Loss Evaluation by Means of the Backscattering Technique,” Electron. Lett. 15, 550 (1979).
[CrossRef]

B. Costa, B. Sordo, E. Vezzoni, “High Dynamic Range Backscattering Measurements,” in Advances in Ceramics, Vol. 2 (American Ceramic Society, Columbus, Ohio, 1981), pp. 273–277.

D’Orio, C.

B. Costa, F. Esposto, C. D’Orio, P. Morra, “Splice Loss Evaluation by Means of the Backscattering Technique,” Electron. Lett. 15, 550 (1979).
[CrossRef]

Danielson, B. L.

B. L. Danielson, “Backscatter Measurements on Optical Fibers,” Natl. Bur. Stand. U.S. Tech. Note 1034 (1981).

B. L. Danielson, “Backscatter Signature Simulations,” Natl. Bur. Stand. U.S. Tech Note 1050 (1981).

DeBlok, C. M.

P. Matthijsse, C. M. DeBlok, “Field Measurement of Splice Loss Applying the Backscattering Method,” Electron. Lett. 15, 795 (1979).
[CrossRef]

Eriksrud, M.

M. Eriksrud, A. R. Mickelson, “Application of the Backscattering Technique to the Determination of Parameter Fluctuations in Multimode Optical Fibers,” IEEE J. Quantum Electron. QE-18, 1478 (1982).
[CrossRef]

M. Eriksrud, unpublished work.

Esposto, F.

B. Costa, F. Esposto, C. D’Orio, P. Morra, “Splice Loss Evaluation by Means of the Backscattering Technique,” Electron. Lett. 15, 550 (1979).
[CrossRef]

Gardner, W. B.

A. H. Cherin, E. D. Head, C. R. Lovelace, W. B. Gardner, “Selection of Mandrel Wrap Mode Filters for Optical Fiber Loss Measurements,” Fiber Int. Opt. 4, 49 (1982).
[CrossRef]

F. T. Stone, W. B. Gardner, C. R. Lovelace, “Calorimetric Measurement of Absorption and Scattering Losses in Optical Fibers,” Opt. Lett. 2, 48 (1978).
[CrossRef] [PubMed]

Gold, M.

M. Gold, “Design of a Long-Range Single-Mode OTDR,” IEEE/OSA J. Lightwave Technol. LT-3, 39 (1985).
[CrossRef]

Gold, M. P.

A. H. Hartog, M. P. Gold, “On the Theory of Backscattering in Single-Mode Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-2, 76 (1984).
[CrossRef]

M. P. Gold, A. H. Hartog, “Measurement of Backscatter Factor in Single-Mode Fibers,” Electron. Lett. 17, 965 (1981).
[CrossRef]

Grasso, G.

B. Costa, B. Sordo, U. Menaglia, L. Piccari, G. Grasso, “Attenuation Measurements Performed by Backscattering Technique,” Electron. Lett. 16, 352 (1980).
[CrossRef]

Hanson, A. G.

For precise definitions of these quantities, see A. G. Hanson, Optical Waveguide Communications Glossary, Natl. Bur. Stand. U.S. Handbook 140 (1982).

Hartog, A. H.

A. H. Hartog, M. P. Gold, “On the Theory of Backscattering in Single-Mode Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-2, 76 (1984).
[CrossRef]

M. P. Gold, A. H. Hartog, “Measurement of Backscatter Factor in Single-Mode Fibers,” Electron. Lett. 17, 965 (1981).
[CrossRef]

A. H. Hartog, “Advances in Optical Time-Domain Reflectometry,” in Technical Digest, Symposium on Optical Fiber Measurements, Boulder, Colo. (1984), pp. 89–94.

Head, E. D.

A. H. Cherin, E. D. Head, C. R. Lovelace, W. B. Gardner, “Selection of Mandrel Wrap Mode Filters for Optical Fiber Loss Measurements,” Fiber Int. Opt. 4, 49 (1982).
[CrossRef]

Hecht, J.

J. Hecht, “Fiberoptic Test Equipment Survey,” Lasers Appl. 2, 63 (1983).

Hudson, C. H.

C. H. Hudson, “NBS Standard Reference Materials Catalog 1984–85,” Natl. Bur. Stand. U.S. Spec. Publ. 260 (1984).

Hullett, J. L.

J. L. Hullett, R. D. Jeffery, “Long-Range Optical Fiber Backscatter Loss Signatures Using Two-Point Processing,” Opt. Quantum Electron. 14, 41 (1982).
[CrossRef]

R. D. Jeffery, J. L. Hullett, “N-Point Processing of Optical Fiber Backscatter Signals,” Electron. Lett. 16, 822 (1982).
[CrossRef]

J. L. Hullett, R. D. Jeffery, “Long-Range Optical Fiber Backscatter Loss Signatures Using Two-Point Processing,” Opt. Quantum Electron. 14, 41 (1982).
[CrossRef]

Inaco, S.

H. Murata, S. Inaco, Y. Matsuda, T. Kuroha, “Optimum Design for Optical Fiber Used in Optical Cable System,” in Technical Digest, Sixth European Conference on Optical Communications, York (1980).

Inada, K.

K. Inada, “A New Graphical Method Relating to Optical Fiber Attenuation,” Opt. Commun. 19, 437 (1976).
[CrossRef]

Jeffery, R. D.

R. D. Jeffery, J. L. Hullett, “N-Point Processing of Optical Fiber Backscatter Signals,” Electron. Lett. 16, 822 (1982).
[CrossRef]

J. L. Hullett, R. D. Jeffery, “Long-Range Optical Fiber Backscatter Loss Signatures Using Two-Point Processing,” Opt. Quantum Electron. 14, 41 (1982).
[CrossRef]

J. L. Hullett, R. D. Jeffery, “Long-Range Optical Fiber Backscatter Loss Signatures Using Two-Point Processing,” Opt. Quantum Electron. 14, 41 (1982).
[CrossRef]

Jensen, S. M.

M. K. Barnoski, S. M. Jensen, “Fiber Waveguides: A Novel Technique for Investigating Attenuation Characteristics,” Appl. Opt. 15, 2112 (1976).
[CrossRef] [PubMed]

M. K. Barnoski, S. M. Jensen, M. D. Rourke, “OTDR Differential-Modal-Attenuation Measurements,” in Technical Digest, Fourth European Conference on Optical Communication, Genoa (1978).

S. M. Jensen, “Observation of Differential Mode Attenuation in Graded-Index Fiber Waveguides Using OTDR,” in Technical Digest, Optical Fiber Communication, Washington, D.C. (1979).

Kapron, F. P.

F. P. Kapron, P. D. Lazay, “Monomode Fiber Measurement Techniques and Standards,” Proc. Soc. Photo-Opt. Instrum. Eng. 425, 40 (1983).

Kuhl, J. F.

D. A. Philen, I. A. White, J. F. Kuhl, S. C. Mettler, “Single-Mode Fiber OTDR: Experiment and Theory,” IEEE J. Quantum Electron. QE-18, 1499 (1982).
[CrossRef]

Kurki, J.

J. Kurki, J. Viljanen, “A High Performance Backscattering Set-Up Using Multimode Light Channels,” Opt. Quantum Electron. 15, 471 (1983).
[CrossRef]

Kuroha, T.

H. Murata, S. Inaco, Y. Matsuda, T. Kuroha, “Optimum Design for Optical Fiber Used in Optical Cable System,” in Technical Digest, Sixth European Conference on Optical Communications, York (1980).

Lazay, P. D.

F. P. Kapron, P. D. Lazay, “Monomode Fiber Measurement Techniques and Standards,” Proc. Soc. Photo-Opt. Instrum. Eng. 425, 40 (1983).

Le Boutet, A.

A. Le Boutet, “Analysis of Backscattering Results Applied to Cable Connection,” in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979).

Lovelace, C. R.

A. H. Cherin, E. D. Head, C. R. Lovelace, W. B. Gardner, “Selection of Mandrel Wrap Mode Filters for Optical Fiber Loss Measurements,” Fiber Int. Opt. 4, 49 (1982).
[CrossRef]

F. T. Stone, W. B. Gardner, C. R. Lovelace, “Calorimetric Measurement of Absorption and Scattering Losses in Optical Fibers,” Opt. Lett. 2, 48 (1978).
[CrossRef] [PubMed]

Marcuse, D.

D. Marcuse, “Steady-State Losses of Optical Fibers and Fiber Resonators,” Bell. Syst. Tech. J. 55, 1445 (1976).

D. Marcuse, Principles of Optical Fiber Measurements (Academic, New York, 1981), Chap. 5.

Matsuda, Y.

H. Murata, S. Inaco, Y. Matsuda, T. Kuroha, “Optimum Design for Optical Fiber Used in Optical Cable System,” in Technical Digest, Sixth European Conference on Optical Communications, York (1980).

Matthijsse, P.

P. Matthijsse, C. M. DeBlok, “Field Measurement of Splice Loss Applying the Backscattering Method,” Electron. Lett. 15, 795 (1979).
[CrossRef]

Menaglia, U.

B. Costa, B. Sordo, U. Menaglia, L. Piccari, G. Grasso, “Attenuation Measurements Performed by Backscattering Technique,” Electron. Lett. 16, 352 (1980).
[CrossRef]

Mettler, S. C.

D. A. Philen, I. A. White, J. F. Kuhl, S. C. Mettler, “Single-Mode Fiber OTDR: Experiment and Theory,” IEEE J. Quantum Electron. QE-18, 1499 (1982).
[CrossRef]

Mickelson, A. R.

M. Eriksrud, A. R. Mickelson, “Application of the Backscattering Technique to the Determination of Parameter Fluctuations in Multimode Optical Fibers,” IEEE J. Quantum Electron. QE-18, 1478 (1982).
[CrossRef]

Morra, P.

B. Costa, F. Esposto, C. D’Orio, P. Morra, “Splice Loss Evaluation by Means of the Backscattering Technique,” Electron. Lett. 15, 550 (1979).
[CrossRef]

Murata, H.

H. Murata, S. Inaco, Y. Matsuda, T. Kuroha, “Optimum Design for Optical Fiber Used in Optical Cable System,” in Technical Digest, Sixth European Conference on Optical Communications, York (1980).

Neumann, E. G.

E. G. Neumann, “Analysis of the Backscattering Method for Testing Optical Fiber Cables,” Electron. Commun. (AEU) 34, 157 (1980).

E. G. Neumann, “Optical Time-Domain Reflectometer: Comment,” Appl. Opt. 17, 1675 (1978).
[CrossRef] [PubMed]

Newton, S. A.

S. A. Newton, J. E. Bowers, H. J. Shaw, “Single-Mode Fiber Recirculating Delay Line,” Proc. Soc. Photo-Opt. Instrum. Eng. 326, 108 (1982).

Okada, K.

K. Okada, “Backscattering Measurement,” in Annual Reviews in Electronics, Computers, and Telecommunications, Vol. 3 (Ohm Publishing, Tokyo, 1982), pp. 299–313.

Personick, S. D.

S. D. Personick, “Photon Probe—An Optical Time-Domain Reflectometer,” Bell Syst. Tech. J. 56, 355 (1977).

Philen, D. A.

D. A. Philen, I. A. White, J. F. Kuhl, S. C. Mettler, “Single-Mode Fiber OTDR: Experiment and Theory,” IEEE J. Quantum Electron. QE-18, 1499 (1982).
[CrossRef]

Piccari, L.

B. Costa, B. Sordo, U. Menaglia, L. Piccari, G. Grasso, “Attenuation Measurements Performed by Backscattering Technique,” Electron. Lett. 16, 352 (1980).
[CrossRef]

Pochelle, J. P.

M. Biet, J. P. Pochelle, “Backscattering Analysis of Optical Fibers in the Dual Mode Regime,” J. Opt. Commun. 4, 42 (1983).

Rittich, D.

D. Rittich, “Low Loss Optical Couplers,” in Advances in Ceramics, Vol. 2 (American Ceramic Society, Columbus, Ohio, 1981), pp. 451–462.

Rourke, M. D.

M. D. Rourke, “Measurement of the Insertion Loss of a Single Microbend,” Opt. Lett. 6, 440 (1981).
[PubMed]

M. K. Barnoski, S. M. Jensen, M. D. Rourke, “OTDR Differential-Modal-Attenuation Measurements,” in Technical Digest, Fourth European Conference on Optical Communication, Genoa (1978).

Shaw, H. J.

S. A. Newton, J. E. Bowers, H. J. Shaw, “Single-Mode Fiber Recirculating Delay Line,” Proc. Soc. Photo-Opt. Instrum. Eng. 326, 108 (1982).

Skolnik, M. I.

M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, New York, 1962), p. 464.

Sordo, B.

B. Costa, B. Sordo, U. Menaglia, L. Piccari, G. Grasso, “Attenuation Measurements Performed by Backscattering Technique,” Electron. Lett. 16, 352 (1980).
[CrossRef]

B. Costa, B. Sordo, E. Vezzoni, “High Dynamic Range Backscattering Measurements,” in Advances in Ceramics, Vol. 2 (American Ceramic Society, Columbus, Ohio, 1981), pp. 273–277.

Stensland, L.

L. Stensland, G. Borak, “Raman Time-Domain Reflectometry,” in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981, paper WF1.

Stone, F. T.

Szentesi, O. I.

O. I. Szentesi, “Field Measurements of Optical Fiber Cable Systems,” in Technical Digest, Symposium on Optical Fiber Measurements, Boulder, Colo. (1980), pp. 37–42.

Vezzoni, E.

B. Costa, B. Sordo, E. Vezzoni, “High Dynamic Range Backscattering Measurements,” in Advances in Ceramics, Vol. 2 (American Ceramic Society, Columbus, Ohio, 1981), pp. 273–277.

Viljanen, J.

J. Kurki, J. Viljanen, “A High Performance Backscattering Set-Up Using Multimode Light Channels,” Opt. Quantum Electron. 15, 471 (1983).
[CrossRef]

White, I. A.

D. A. Philen, I. A. White, J. F. Kuhl, S. C. Mettler, “Single-Mode Fiber OTDR: Experiment and Theory,” IEEE J. Quantum Electron. QE-18, 1499 (1982).
[CrossRef]

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

S. D. Personick, “Photon Probe—An Optical Time-Domain Reflectometer,” Bell Syst. Tech. J. 56, 355 (1977).

Bell. Syst. Tech. J. (1)

D. Marcuse, “Steady-State Losses of Optical Fibers and Fiber Resonators,” Bell. Syst. Tech. J. 55, 1445 (1976).

Electron. Commun. (AEU) (1)

E. G. Neumann, “Analysis of the Backscattering Method for Testing Optical Fiber Cables,” Electron. Commun. (AEU) 34, 157 (1980).

Electron. Lett. (5)

R. D. Jeffery, J. L. Hullett, “N-Point Processing of Optical Fiber Backscatter Signals,” Electron. Lett. 16, 822 (1982).
[CrossRef]

B. Costa, F. Esposto, C. D’Orio, P. Morra, “Splice Loss Evaluation by Means of the Backscattering Technique,” Electron. Lett. 15, 550 (1979).
[CrossRef]

P. Matthijsse, C. M. DeBlok, “Field Measurement of Splice Loss Applying the Backscattering Method,” Electron. Lett. 15, 795 (1979).
[CrossRef]

B. Costa, B. Sordo, U. Menaglia, L. Piccari, G. Grasso, “Attenuation Measurements Performed by Backscattering Technique,” Electron. Lett. 16, 352 (1980).
[CrossRef]

M. P. Gold, A. H. Hartog, “Measurement of Backscatter Factor in Single-Mode Fibers,” Electron. Lett. 17, 965 (1981).
[CrossRef]

Fiber Int. Opt. (1)

A. H. Cherin, E. D. Head, C. R. Lovelace, W. B. Gardner, “Selection of Mandrel Wrap Mode Filters for Optical Fiber Loss Measurements,” Fiber Int. Opt. 4, 49 (1982).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. A. Philen, I. A. White, J. F. Kuhl, S. C. Mettler, “Single-Mode Fiber OTDR: Experiment and Theory,” IEEE J. Quantum Electron. QE-18, 1499 (1982).
[CrossRef]

M. Eriksrud, A. R. Mickelson, “Application of the Backscattering Technique to the Determination of Parameter Fluctuations in Multimode Optical Fibers,” IEEE J. Quantum Electron. QE-18, 1478 (1982).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (2)

A. H. Hartog, M. P. Gold, “On the Theory of Backscattering in Single-Mode Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-2, 76 (1984).
[CrossRef]

M. Gold, “Design of a Long-Range Single-Mode OTDR,” IEEE/OSA J. Lightwave Technol. LT-3, 39 (1985).
[CrossRef]

J. Opt. Commun. (1)

M. Biet, J. P. Pochelle, “Backscattering Analysis of Optical Fibers in the Dual Mode Regime,” J. Opt. Commun. 4, 42 (1983).

J. Opt. Soc. Am. (1)

Lasers Appl. (1)

J. Hecht, “Fiberoptic Test Equipment Survey,” Lasers Appl. 2, 63 (1983).

Natl. Bur. Stand. U.S. Monogr. (1)

“The Role of Standard Reference Materials in Measurement Systems,” Natl. Bur. Stand. U.S. Monogr. 148 (1975).

Natl. Bur. Stand. U.S. Spec. Publ. (1)

C. H. Hudson, “NBS Standard Reference Materials Catalog 1984–85,” Natl. Bur. Stand. U.S. Spec. Publ. 260 (1984).

Natl. Bur. Stand. U.S. Tech Note 1050 (1)

B. L. Danielson, “Backscatter Signature Simulations,” Natl. Bur. Stand. U.S. Tech Note 1050 (1981).

Natl. Bur. Stand. U.S. Tech. Note (1)

B. L. Danielson, “Backscatter Measurements on Optical Fibers,” Natl. Bur. Stand. U.S. Tech. Note 1034 (1981).

Opt. Commun. (1)

K. Inada, “A New Graphical Method Relating to Optical Fiber Attenuation,” Opt. Commun. 19, 437 (1976).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (3)

J. L. Hullett, R. D. Jeffery, “Long-Range Optical Fiber Backscatter Loss Signatures Using Two-Point Processing,” Opt. Quantum Electron. 14, 41 (1982).
[CrossRef]

J. Kurki, J. Viljanen, “A High Performance Backscattering Set-Up Using Multimode Light Channels,” Opt. Quantum Electron. 15, 471 (1983).
[CrossRef]

J. L. Hullett, R. D. Jeffery, “Long-Range Optical Fiber Backscatter Loss Signatures Using Two-Point Processing,” Opt. Quantum Electron. 14, 41 (1982).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

S. A. Newton, J. E. Bowers, H. J. Shaw, “Single-Mode Fiber Recirculating Delay Line,” Proc. Soc. Photo-Opt. Instrum. Eng. 326, 108 (1982).

F. P. Kapron, P. D. Lazay, “Monomode Fiber Measurement Techniques and Standards,” Proc. Soc. Photo-Opt. Instrum. Eng. 425, 40 (1983).

Other (17)

O. I. Szentesi, “Field Measurements of Optical Fiber Cable Systems,” in Technical Digest, Symposium on Optical Fiber Measurements, Boulder, Colo. (1980), pp. 37–42.

B. Costa, B. Sordo, E. Vezzoni, “High Dynamic Range Backscattering Measurements,” in Advances in Ceramics, Vol. 2 (American Ceramic Society, Columbus, Ohio, 1981), pp. 273–277.

K. Okada, “Backscattering Measurement,” in Annual Reviews in Electronics, Computers, and Telecommunications, Vol. 3 (Ohm Publishing, Tokyo, 1982), pp. 299–313.

S. M. Jensen, “Observation of Differential Mode Attenuation in Graded-Index Fiber Waveguides Using OTDR,” in Technical Digest, Optical Fiber Communication, Washington, D.C. (1979).

M. K. Barnoski, S. M. Jensen, M. D. Rourke, “OTDR Differential-Modal-Attenuation Measurements,” in Technical Digest, Fourth European Conference on Optical Communication, Genoa (1978).

L. Stensland, G. Borak, “Raman Time-Domain Reflectometry,” in Technical Digest, Third International Conference on Integrated Optics and Optical Fiber Communication (Optical Society of America, Washington, D.C., 1981, paper WF1.

A. Le Boutet, “Analysis of Backscattering Results Applied to Cable Connection,” in Technical Digest, Fifth European Conference on Optical Communication, Amsterdam (1979).

D. Rittich, “Low Loss Optical Couplers,” in Advances in Ceramics, Vol. 2 (American Ceramic Society, Columbus, Ohio, 1981), pp. 451–462.

M. Eriksrud, unpublished work.

Ref. 28, p. 240.

M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, New York, 1962), p. 464.

A. H. Hartog, “Advances in Optical Time-Domain Reflectometry,” in Technical Digest, Symposium on Optical Fiber Measurements, Boulder, Colo. (1984), pp. 89–94.

D. Marcuse, Principles of Optical Fiber Measurements (Academic, New York, 1981), Chap. 5.

For precise definitions of these quantities, see A. G. Hanson, Optical Waveguide Communications Glossary, Natl. Bur. Stand. U.S. Handbook 140 (1982).

“Standard Optical Waveguide Fiber Material Classes and Preferred Sizes,” EIA Document RS-458A (1984).

M. K. Barnoski, “Coupling Components for Optical Fiber Waveguides,” in Fundamentals of Optical Fiber Communications (Academic, New York, 1981), Chap. 3. In the case of bulk-optic directional couplers where the source is imaged onto the fiber end, the injected power may be independent of 2a for diffraction-limited laser sources and approximately proportional to 2a for semiconductor lasers with a stripe geometry emitting surface. However, Murata35 finds that coupled power in the latter case is largely independent of core diameter.
[CrossRef]

H. Murata, S. Inaco, Y. Matsuda, T. Kuroha, “Optimum Design for Optical Fiber Used in Optical Cable System,” in Technical Digest, Sixth European Conference on Optical Communications, York (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic representation of a conventional OTDR. A common port (R/T junction) is used to transmit the probe pulse and receive the backscattered optical signal.

Fig. 2
Fig. 2

Example of a logarithmic signature for a uniform fiber. Indicated quantities are used in characterizing the OTDR (see text). The noise floor is defined to be the point where the extrapolated SNR is one. The quantity W m is the FWHM at a point −3 dB (optical) from maximum.

Fig. 3
Fig. 3

Test fixture consisting of a neutral density filter with attenuation A placed between collimating lenses C1 and C2. The filter may be one of a series which is mounted on a rotating wheel.

Fig. 4
Fig. 4

Schematic OTDR display for the test fixture shown in Fig. 3. The dynamic range D is given by the one-way loss to the noise floor. The quantity β is the one-way fiber attenuation rate (dB/m).

Fig. 5
Fig. 5

Recirculating delay line test fixture. The resonator is formed by mirrors M1, M2, and length L of graded-index fiber. An isolator I is used to suppress the initial unwanted reflection from M1. The lead-in fiber generates the reference backscatter signal.

Fig. 6
Fig. 6

Composite signature from the text fixture shown in Fig. 5. The reference power level from a standard fiber and the noise floor determine the dynamic range of the OTDR. The loss per pulse is ~0.63 dB (optical). Nonlinearities are due to instrumental effects.

Fig. 7
Fig. 7

Isolator used in the test fixture of Fig. 5. A slit S is placed in the beam produced by the collimated lenses C1 and C2. The upper half of the beam from the lead-in fiber is imaged onto the mirror M1, and the reflection is stopped by the slit. The end of the lead-in fiber is beveled to eliminate the Fresnel reflection at that point.

Fig. 8
Fig. 8

Test fixture signature showing the effect of a zero-offset error. Arrows indicate the apparent noise floor extrapolated from large signals, and the actual noise floor with the zero level correctly set.

Fig. 9
Fig. 9

Expanded-scale test-fixture signature in an interval where the SNR is easily estimated. The seventy-second pulse is indicated by the arrow.

Fig. 10
Fig. 10

Backscatter-delay-line test fixture. In this case the lead-in and resonator fiber are both of length L. The probe pulse travels in the direction of the arrows and the backscatter signal in the opposite direction.

Fig. 11
Fig. 11

Simulated backscatter signature from the test fixture shown in Fig. 10. We have assumed L = 1 km and a fiber loss of 0.5 dB/km (one-way).

Fig. 12
Fig. 12

Simulated Gaussian noise sampled at 100 intervals. The rms amplitude is taken to be the 0-dB level. Approximately 16% of the amplitudes are larger than this value. Also, we may estimate the rms value as 3.9 dB (optical) below the observed maximum value. This latter estimate is within 0.6 dB of the true rms value 68% of the time.

Tables (2)

Tables Icon

Table I Multimode Optical Waveguide Fiber Material Class Standards

Tables Icon

Table II Preferred Sizes of Optical Waveguide Fibers

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

p b ( x ) = P 0 W S exp ( 2 α T x ) .
S = 3 α s g ( N . A . ) 2 υ 16 n 1 2 ( g + 1 ) .
S = 3 16 α s υ ( λ π n 1 ω 0 ) 2 ,
A L = 5 log [ P b ( L ) P b ( 0 ) ] dB ( one-way loss )
Backscatter power loss = 10 log [ P b ( L ) P b ( 0 ) ] dB ( optical ) .
SNR = 20 log [ P b ( 0 ) P n ] dB ( electrical ) .
D = 5 log [ P b ( 0 ) P n ] dB ( one-way loss ) ,
D + 5 log [ r W S ] dB ( one-way loss ) ,
2 D + 10 log [ W S ] dB ( optical ) .
R = ( W m υ ) / 2 ( m ) ,
M = g 2 ( g + 2 ) ( 2 π a λ ) 2 ( N . A . ) 2 .
P b ( x ) = S exp ( 2 α T x ) x L
P b ( x ) = ( 1 + n ) K 14 2 K 34 n S exp [ 2 α T ( x + L ) ] x > L .
S = r W P b ( L ) P r ( L )
r = ( n 1 1 n 1 + 1 ) 2 ,

Metrics